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The perturbations of order J2 in the orbital elements of an earth
satellite are analysed by an elementary treatment that neglects terms of order
j2 e .The resulting expressions are combined into a triad of cylindrical polar
2 _coordinates, defined by a plane of fixed inclination and uniform rotation rate,

since this leads to very simple formulae for perturbations in coordinates.

Mean orbital elements are required and are introduced in a general manner
involving arbitrary constants. The normal choice of constants is such as to make
both first-order and second-order perturbation formulae as compact as possible
for the cylindrical coordinates, the second-order results being expressible as

6r = _2 (R2/a) f {f cos 4u + 2 (26 - 31f) cos 2u1
12 2

6u' = I2 J2 (R/a)2 f {f sin 4u - (19 - 20f) sin 2u)

and3 2 (R2/a) f sin 2i sin 3u ,

6c~ I = _-6 J2

where R is the earth's equatorial radius; a , i and u are the satellite's
(mean) semi-major axis, inclination and argument of latitude, and f is
sin 2 i .

Other aspects of the J2 'main problem' are considered.
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I INTRODUCTION

i.1 Previous papers on the subject

The description of the motion of an artificial satellite in the axi-

symmetric field due to the lower-order zonal harmonies of the geopotential has

been recognized as the 'main problem' in the theory of satellite orbits, and many

solutions have been published. The first RAE paper I appeared in the same month
2

as the first satellite and was succeeded by the theory which Merson developed as

a basis for the RAE's first proper orbit determination program 3 . Merson took this

first theory as far as J6 (results for an arbitrary J, were obtained by the4 -56

present author ) and then compared it with the theory of Kozai6 (taken to J4 )
that pioneered the orbit analysis of the Smithsonian Astrophysical Observatory.

7In a second theory , Merson developed the Kozai approach as the basis for a new
8,9orbit determination program, PROP, that is still in use. The paper by Kozai

may be regarded as one of the two classic American papers (its approach is

summarized in a recent text-book 0), the other being the paper of Brouwer
If

published at the same time. The Brouwer approach is followed in the book of
12

Brouwer and Clemence , whilst one of the first text-books to give results (for
13

J2 only) was that of Sterne

The early papers normally provided long-term solutions of the 'main

problem', ie gave formulae for perturbations in mean orbital elements, to

O(J) , where J, =0 (J2) if t > 2 , but only took short-periodic perturbations

to 0(J2) , neglecting them entirely for higher-order harmorics. It was found by

Vinti 14-17 that, by use of spheroidal coordinates, a complete solution could be

found for a field including J2 but the higher-order even harmonics had to be
= 2 3

powers of J2 (Viz J4 f -J' J6 
= J2' etc), so the general problem remained.

The first paper to take short-periodic perturbations to O(J 2 ) seems to
18 19

have been that of Petty and Breakwell . Kozai, in a comprehensive development

to O(J ) for short-periodic perturbations and (J)for long-term perturb

tions, changed his approach to the method of von Zeipel that had been used by

Brouwer. Aksnes2 0 followed Hor21 in basing his approach on the use of Lie

series; by reference to a suitable intermediate orbit, he thereby obtained

results that were equivalent to Kozai's but much more compact. Much more elemen-

tary (and therefore comprehensible) methods, just based on the planetary equations

of Lagrange, were adopted by the French, the 2 short-periodic perturbations
223 2 23

being given by Bretagnon and the J2 long-term effects by Berger

Solution of the J2 problem to get a further order - short-periodic

perturbations to 0( 3) and long-term effects to O(J2 ) - was achieved by
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Deprit and Romn by the application of computer algebra to a method based on Lie

series. Their results are only valid for moderately small values of the orbital

eccentricity, e , since they are expressed as truncated power series in e

Techniques based on computer algebra are obviously very powerful, and two papers

have recently been published that give main-problem solutions involving vast

numbers of terms. Berger and Walch 2 5 cover harmonics as far as J37 ; they only

go to second order in short-periodic perturbations and (basically) third order in

long-term effects, but this means the inclusion of secular terms in J5 j7/

for example, that originate as fourth-order couplings between J5and J37 P so

that a large number of combinations are involved. Kinoshita 26covers only the

classical main-term harmonics, ie to 1J4  only, but goes to third order for short-

periodic perturbations and to fourth order for long-term effects; the perturba-
21

tion method of Hori is adopted and the resulting accuracy, for satellite

motion in a low-eccentricity orbit, is better than 1 cm over a month.

Much of the literature cited is extremely difficult to follow, even for a

reader with considerable experience of orbital analysis, mainly because of the

extreme sophistication of the methods used, but probably also because of

unfamiliarity with the notation. Without understanding the methods it is diffi-

cult to interpret the results - to pick out (say) a dominant set of terms for

2

This is particularly true if expansions are given in terms of a quantity n~

defined as A 2(this quantity is denoted by q in the present paper).

1.2 The present paper

In many applications, involving satellites in orbits of low eccentricity,

2
there are significant perturbations of order J 2 , including terms of short

be obtained quite easily, by an elementary iteration on Lagrange's planetary

equations, if a first-order solution to 0(J 2 e) is already available. Further-

more, when an appropriate set of non-singular elements is used, the results can

be expressed very compactly. This is the approach of the present paper, the

ai,, ranparticular set of non-singular elements being (as defined in section 2.!)

The paper makes two contributions to the solution of the 'main problem',

and discusses various aspects of the philosophy of perturbation theory. The

first contribution concerns the derivation of formulae for perturbations in

position, not merely orbital elements. If the satellite' s position can be
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expressed by three suitable coordinates, then the number of perturbation formulae

required is immediately halved. (In certain applications, for example the

processing of Doppler data, formulae for three velocity components will also be

required, but these can be obtained from the position formulae, essentially by

differentiation.) The reduction will be all the greater if the formulae for

pns3.tion are simpler than those for certain of the elements, as is clear from

Kozai's original paper 6.By introducing r (geocentric distance) and u (argu-

ment of latitude), Kozai was able to reduce long expressions for the (first-order)

short-periodic perturbations in a, e, w and M (defined here in section 2.1)

into compact expressions for the perturbations in r and u ; the expressions

for the perturbations in i and Qz are much shorter and he left these alone.

In developing the Kozai approach for use with PROP, Merson 7presented six

perturbation formulae that are extremely compact and totally free of singularity,

and the present author modified 9them slightly to reduce non-linear effects.

There is a different way to develop the Kozai approach, however, and in a

recent study 27of the perturbations of a Navstar satellite due to a general

harmonic J ZMI presented results in what I called the 'RLC system' of mutually

orthogonal directions, where R refers to r (as above), L to an along-track

quantity I. that only exists at the differential level (and is such that ft.

is the product of r with one of the six perturbations of Merson, viz

Su + 6Q cos i), and C to a cross-track displacement (such that 6c is the

product of r with Si sin u - 60 sin i cos u). Ref 27 does not coverJ2
2

effects, however, and the RLC system is not really suitable for effects beyond

the first order in any J , because an integral X. is not defined; but it is a

small step - taken here in section 2.5 - to a system that is suitable. The

system amounts to a set of cylindrical polar coordinates defined in reference to

a steadily rotating mean orbital plane, and the formulae for second-order short-

periodic perturbations in these coordinates constitute the main results of this

paper.

The paper's other contribution to the main problem relates to the defini-

tion of 'mean' orbital elements, and hence to the 'mean orbital plane' just

referred to. The concept of a mean element underlies all approaches to the main

problem, but there is an ambiguity in every such element in that the short-

periodic perturbation (which, added to the mean element, gives the uniquely

defined osculating element) is arbitrary by any quantity that is free of short-

periodic perturbation. Thus if is one of the six orbital elements and

~oc + J + J2 + J3C+

is
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(we later make such expansions in terms of a quantity I~,related to J
rather than J2 itself), then ;,. is arbitrary to the extent of a quantity that

could conveniently be denoted by k.i and is itself a function of the six mean

elements. Furthermore, if j > I , each r.is necessarily a function of the

k.j for smaller

most papers on the main problem do not explain how their mean elements are

defined, nor indeed admit that there is any problem. This makes it difficult to

compare the results of different theories, and - worse - hard to interpret the

published elements of actual satellites. The approach of the present paper is to

face up to the problem by introducing the constant-like k-quantities explicitly

into formulae, so that general results can he given without a pre-empted inter-

pretation of particular mean elements. Individual first-order k 4(effectively

the k 1 with appropriate 'scaling') are introduced in section 3 (subsequent to

further discussion of mean elements in section 2.4), the most important being

ka k. and k

There are three possible criteria which can underlie the choice of the

k-quantities and which (tacitly at least) are applied in the literature. First,

the k's may be chosen so as to make the expressions for positional perturba-

tions as simple as possible; this is the philosophy adopted here. Secondly, they

may be chosen such that time averages of the short-periodic perturbations are

strictly zero; this amounts to making the k's zero if perturbations are expres-

sed in terms of mean anomaly (M) rather than true anomaly (v). Thirdly, the k's

may be set to zero when the perturbations are expressed in terms of v ; higher-

order formulae will then be simpler than with the second choice.

This brings us to another important point. Early formulations of the

short-periodic perturbations (eg Ref s 6 and 13) were in terms of v (or u

where u - v = w , the argument of perigee) and hence expressible in closed form.

Later papers, and in particular those based on computer algebra, switched to M

for reasons that are not entirely clear, the result being expressions that are

necessarily truncations of power series in e . The present paper, even though

2

obvious reason why, in terms of v , the main problem should not be solved to

further order without a requirement for infinite series in e (but see also the

remarks of Refs 24 and 28; the difficulty lies in evaluating fv dM).

Section 9 of this paper is devoted to complete expressions for the second-

order long-term variation of the orbital elements, divided into secular and long-

2

peidcprubaininteusala.We_(J )efcsca engetd



no long-periodic perturbations arise (the meaning of 'second-order' in connection

with these perturbations is discussed), but (as already indicated) it makes sense

to take long-term perturbations to a higher order than short-periodic perturba-

tions, unless the satellite's motion is only to be represented for a matter of,

say, at most a revolution or two. For completeness, also, the untruncated

expressions for the first-order perturbations in positional coordinates are

given in section 8, since section 3 takes them only to O(J2 e)

The results obtained for perturbations in orbital elements are compared
22 25 26with those given by Bretagnon , Berger and Walch , and Kinoshita2 , all dis-

crepancies being resolved. The formulae for second-order positional perturba-

tions have been checked by comparing computed results with those given by

numerical integration.

2 BACKGROUND

2.1 Osculating elements

The standard osculating elements of an elliptic orbit are a (semi-major

axis), e (eccentricity) , i (inclination) , S (right ascension of the node)

w (argument of perigee) and M (mean anomaly) . Since e is here assumed to be

small, we shall also require the non-singular elements n , and U , defined

by

= e cos w , (1)

n = e sin w (2)
and

U = M + W (3)

The mean motion, n , though defined by

2 3
n a 3 M , (4)

where v is the earth's gravitational constant, will often be treated as an

element in its own right. Finally, it is convenient to introduce f, h, p and

q , where

2.
f - sin 1 , (5)

h - 1- lif , (6)

p - a(I -e) (7)
and

q - (I e2)" . (8)
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2.2 Assumed potential

As we are only concerned with the J2 term of the earth's disturbing

potential, U , the potential is taken as p/r + U , where

r J2 r ) 2 P2 (sin 8) ; (9)

here r is the radial distance of the satellite from the centre of the earth,

8 is its geocentric latitude, R is the earth's equatorial radius, and P2  is

the usual Legendre polynomial. Thus we are neglecting drag, lunisolar attraction,

etc, as well as the other harmonics of the real geopotential.

To eliminate 8 , we introduce the argument of latitude, u , of the

satellite, given by

u = v + , (10)

where v is the true anomaly (see section 2.5); thus,

sin 8 = sin i sin u

and hence

2 - 12 - 3f (I - cos 2u)j (11)
r

It is easy to eliminate r , since

E = I + e cos v . (12)
r

2.3 Lagrange's planetary equations

Rates of change of osculating elements may be expressed exactly by
Ln10,12,13

Lagrange's planetary equations Viz:

2 2 W( ' (13)
na 3M

= r - q , (14)
na e

i cosec :i 30(15)
os I - (15)

na2q c a s
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cosec i DU
2 7r ,6)

na q

I cot iauW
- e q - (17)
na2 e De q 1na

and

Sn + , (18)

where ! 1 qU + 2a (19)
2 e 3e Da

na

Equation (19) effectively defines a as the 'modified mean anomaly at epoch'

(t = 0) , on the basis that
t

M = o + n dt (20)

It will be observed that U , where U is given by (3), is not quite free of

aUl/e , since J/le is multiplied by different powers of q in (17) and (19).

Thus though U is a better element than M for use when e is small, it can

complicate matters, rather than simplify them, when a full analysis is required.

The partial derivatives required in Lagrange's equations can be obtained

from (I), bearing in mind that

3v sin v (2 + e cos v)
e 2

q
and

__ 2 +eov) 2

v a 2 0 + e cos

2 3r q

It is also convenient to introduce, for general use throughout the paper, the

quantity K , where

K - 1 J2 (R) , (21)

so that we may re-express U as

U I - (2h + 3f cos 2u)(1 + e cos.v)3 (22)6 p

(It has to be remembered, from time to time, that K is not constant; thus
0 a K/aa - and less importantly aK/ae - is not zero.)
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Then exact expressions for the rates of change of the elements are:

Kna 4
a1 - - 4f sin 2u + e [4h sin v - f sin (u + w) + 5f sin (2u + v ,

2q

..................................................(23)

Kn /~3
e - -i - 4h sin v + f sin (u + w) + 7f sin (2u + v)

4q 3 r + e [4h sin 2v + 12f sin 2u + 5f sin 2(u + v) - f sin 2W]1

...... (24)

Kn sin 2i 
3

2q3  sin 2u 
(25)

Kn cos ( - cos 2u) (26)

q2u

4q3+ le [4h cos 2v - 2 (4 - 7f) cos 2u + 5f cos 2(u + v)

+ f cos 2w + 2(6 - 7f)4

...... (27)
and

e a= - 4h cos v - f cos (u + w) + 7f cos (2u + v)
4q 2

+ le [4h cos 2v - 18f cos 2u + 5f cos 2(u + v)

+ f cos 2w - 12hJ . (28)

The last two equations are written with e-factors on the left-hand side to

emphasise their singularity. The sum, a + w , is free of singularity, and will

be used in section 4.7, but as an exact combination it does not simplify, because

of the difference in powers of q already remarked.

Exact expressions for and T are easy to obtain, since

= ecos w - e sin w (29)

and

= esia w + e cos . (30)
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Thus

4q 3  (4h + f) sin u + 7f sin 3u

4q3

+ je (3(4 - 5f) sin w + (8 - 7f) sin (u + v)

- (4 13f) sin (2u + w) + 5f sin (3u + v))} (31)

and

In- (f4 3  (4h - f) cos u + 7f cos 3u

4q 3  1r

+ ie [(12 - 13f) cos w - 5f cos (u + v)

- (4 - 12f) cos (2u + w) + 5f cos (3u + v)]} (32)

2.4 Mean elements

Let be an osculating element, ie it stands for any one of a, e, i, Q,

w, a, M, E, r and U . Its variation is made up of a long-term effect, not

directly related to the orbital period (ie it is independent of u and v ), and

of a series of short-periodic terms (period a submultiple of the orbital period).

The combination of the short-periodiz terms is the short-periodic perturbation,

S , removal of which from r gives a mean element, , which for most purposes

(because its variation can be plotted easily and accurately over long periods of

time) is more useful than the osculating e .t; thus

+ 6C (33)

The variation of t in general has two components, a purely secular effect,

which is zero for several of the elements, and a long-periodic effect related to

the secular variation of w . Now, to the first order in J2 there is no long-

periodic effect (the meaning of 'order' in relation to long-periodic perturbations

is discussed in section 9), since long-periodic effects are induced by the first-

order variation of w and hence only appear at higher-than-first order; at
2

second order, though there is an effect, it is O(J2 e) , which (until section 9)

we are neglecting. Hence we may (normally) write

- + t , (34)

where t vanishes when C is a, e or i . It will sometimes be useful to

write
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40 + L (35)

where, from (33) and (34)

= ~t + (36)

We shall be expressing 6C as a polynomial (truncated to a quadratic) in

Kwhere K is K , as given by (21), with p replaced by j . It is evident

that the 'coefficient' of each 'term' of the polynomial is itself a function of

the (mean) orbital elements, possibly involving many terms, and that such a

function is arbitrary to the extent of a u-independent term, ie that mean elements

are only defined to within selected 'constants'. Choice of a set of constants is

a matter of convenience, and published papers do not always make clear what parti-

cular constants have been chosen, or the motivation for the authors' choice.

As indicated in section 1, the present paper generalizes the approach to

mean elements by explicitly introducing arbitrary 'constants' (ka , k eetc)

into the expressions, ,that occur as coefficients of K in the various 6C~

At the second-order level, similarly, we meet k 2aetc.

2.5 Satellite position

The significance of a set of mean elements, ,is perhaps best understood

by seeing how they can be used directly (in conjunction with perturbation

formulae) to generate a satellite's position coordinates, Viz x, y and z

The standard algorithm for x, y and z , given the osculating elements

a. e, i. Q2, w and M , is as follows:

(i) the eccentric anomaly, E , is found by solving Kepler's equation

E-e sin E = M ; (37)

(ii) the true anomaly, v ,is found from one of the two equivalent

formulae (apart from an ambiguity of quadrant in the first formula)

tan v S sin E (38)
cos E - e

a dtan Jv "' ( eL)l tan JE ;(39)
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(iii) u is obtained from (10), and r from either (12) or the equivalent

formula

r = a (I - e cos E) ; (40)

(iv) x, y and z are obtained from the double coordinate transformation

expressed by the matrix formula

(x y z)T  - R3 (-0) Rl(-i) (r cos u r sin u 0)T (41)

where R.(6) describes rotation about the ith axis, so that

R (e) = 1 0 0 etc

0 cos 6 sine

0 -sin Cos

also T , in (41), denotes transposition.

There is, of course, a preliminary step given by

M = M + nt , (42)

0

if the mean anomaly is only available at epoch, though appropriate for use at

time t , and it may be necessary to recover e, w and M from non-singular

elements E, n and U defined by equations (1) to (3).

Now suppose the starting point is a set of mean elements at epoch, with

secular rates and short-periodic perturbations known. Then each (osculating)

can be obtained from (35) before operating the algorithm, but there is an alter-

native procedure which is more satisfactory since it requires only four

8-expressions instead of six. In this procedure, which was given by Kozai6

quantities 6r and 6u , representing short-periodic perturbations in r and u

appear instead of 6a, 6e, 6w and 6M . Steps (i) to (iii) of the standard

algorithm now operate on the mean elements, leading in turn to E, V, u and ,

after which, as an additional part of step (iii), r and u are derived as

bo6r and u + 6u respectively. The operation of step (iv) is exactly as
before.

But Kozai's modification of the standard algorithm for x, y and z can be

extended, to its logical conclusion, so that only three 6-expressions are required.

Two of the perturbed quantities are slightly modified forms of r and u , and
C
0 may thus be conveniently written r' and u' , whilst the third represents the
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displacement of the satellite from its 'mean orbital plane', ie from a plane of

fixed inclination, i , that rotates at a fixed rate, . This displacement is

in the 'cross-track direction' and may be conveniently denoted by c , though we

cannot distinguish the perturbation Sc from c itself, since the unperturbed

value is zero. The positive direction for c is such that the (positive)

direction of orbital motion is given by the right-hand screw rule, the first-

order formula for 6c being in consequence

6c = r (i sin u - 6Q sin 1 cos u) , (43)

as given in Ref 27.

This approach gives a complete first-order representation of 6i via 6c

but only represents the 6E2 sin i component of 6Q . The other component has

to be incorporated with 6u , the combined effect being 6u' and given to first

order by

6u' = 6u + 60 cos i (44)

The difference between r' and r is zero to first order.

The operation of step (iv) is different with this approach, since i and

not i and 0 , must be used in the coordinate transformation. Thus (41) is

replaced by the formula

(x y z)T f R3(-) R(-i) (r' cos ' r' (45)

It is clear that

r' 2 + c 2 = r 2  (46)

2 2 2
since they are equal to the same thing, Viz x + y + z . It is from (46) that

we see the first-order identity between r' and r ; if 6c can be kept to
2 2 , 2 3 4

O(Ke, K ) , indeed, then r' - r will be O(K e , K e, K ) and hence (for our

purpose) entirely negligible. In section 3 we shall see that 6c can be kept to

O(Ke, K 2) by appropriate choice of k. and k

The quantities r', u' and c form a set of cylindrical polar coordinates

relative to the steadily rotating mean orbital plane. Thus the directions in

which r' increases, u' increases and c increases are orthogonal, correspon-

ding to the axis directions for the RLC system of coordinates previously used by

the author 2 7 . The trouble with that system is that the 'L' coordinate is only

defined differentially (as remarked in section 1) on the basis that
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k = r 6u' . (47)

2.6 Formulae connecting mean and true anomaly

Formulae connecting M and v will be required throughout the paper.

Suitable formulae are collected here for reference. They are valid for both

osculating elements and mean elements.

The expression for the difference between M and v is known as 'the

equation of the centre'. The following is an exact form of the equation, expres-

sed as a double series of Bessel functions, as given by page 77 of Ref 12:

v = M + 2 Z in ~jMJ (je) + e qe k [ j(e + J je (48)

j.1 kl

This leads to

v = M + 2e sin M + l e2 sin 2M - rTe 3 (3 sin M - 13 sin 3M) + O(e 4) , (49)

of which the equivalent v-series result is

M fi v - 2e sin v + 4 e
2 sin 2v - ie3 sin 3v + O(e 4 ) . (50)

From (49) we can derive formulae for sin v and cos v, viz

sinv sinM+esin 2M - e 2 (7 sin - 9 sin 3M)

- *e 3(7 sin 2M - 8 sin 4M) + O(e ) (51)
and

cos v = cos M - e (1 - cos 2M) - i e 2 (cos M- cos 3M)

- lie 3 (cos 2M - cos 4M) + O(e 4 ) . (52)

Finally;v we generalize (51) and (52) to O(e) expressions for the sine and

cosine of (jv + kw) . Allowing T to denote either one of these functions,

we have

T(jv + kw) - T(jM + kw) + je Tt(j + I)M + ki - je T{(j I)M + k + O(e2)

...... (53)

We can, of course, replace M by v , if desired, in the two je-terms. Also,

by taking j = k , we can derive the relations between the sines and cosines of

ku and kU
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3 FIRST-ORDER RESULTS

Complete first-order perturbation formulae may be expressed in closed form,

since powers of e beyond the third do not arise. To integrate equations (23)

to (28), (31) and (32) with respect to t , we transform to v as independent

variable by use of the relation (for an unperturbed orbit)

dv= n 2  (54)
dt 3

This leads to an expression for dC/dv , for each element , in terms of a

power of (p/r) and trigonometric terms in v and w . The power of (p/r)

can be expanded by use of (12), after which the expression for d /dv can be

integrated with respect to v , all elements being held constant.

The results have been given, in various equivalent forms, by a number of

authors, eg in Refs 10, 12 and 13. They are given again, in a compact form, here

for completeness. Since the secular terms in f2, w and a have argument v

rather than t , they are not immediately separable from the short-periodic

terms, whereas for M the separation of AM into Mt and 6M is immediate.

The formulae, in which arbitrary 'constants' have been omitted (see

section 2.4) and in which compactness is achieved largely by writing C. for

cos (jv + 2w) and S. for sin (jv + 2w) , are:-

6a= IKaq -2 {24f C2 + e [48h cos v + 36f (Cl + C3 )]

+ e2 [24h cos 2v + 18f (2C2 + C4 )]

+ e3 [4h (3 cos v + cos 3v) + 3f (C1 + 3CI + 3C3 + C5)

...... (55)

6e f nK {48h cos v + 4f (3CI + 7C3) + 6e (4h cos 2v + 10f C2 + 3f C4]

+ e2 [4h (3 cos v + cos 3v) + f (3C_1 + 33C l + 17 C3 + 3C5)1

...... (56)

Si A K sin 2i {3C2 + e (3CI + C3] } , (57)

*K cos i i-6v + 3S2- e [6 sin v 3S] - S3]} , (58)

0
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Aw - AK e-'{48h sin v - 4f (3S 1 - 7S3) + 6e [4 (4 - 5f) v

+ 4h sin 2v - 2 (2 - 5f) S2 + 3f S4J

+ e2 [6 (14- 17f) sin v + 4h sin 3v - 3f S_

- 3 (8 - 15f) S I - (8 - 19f) S3 + 3f S54}  (59)

4K - e q 148h sin v - 4f (3S 1 - 7S3) + 6e [-8h v

+ 4h sin 2v - 6f S2 + 3f S4] + e 2 [-60h sin v

+ 4h sin 3v - f (3S_1 + 51S 1 + 13S3 - 3S5) (60)

and

AM n' t - 4K e-1 q (48h sin v - 4f (3S1 - 7S3) + 6e [4h sin 2v + 3f S4]

- e2 [4h (3 sin v sin 3v)

+ f (3S_ + 15S ! + S3 - 3S •

.......(61)

The 'mean mean motion', n' , that appears in (61) is an absolute constant

of the motion that is related to the energy integral as explained in Refs 2 and 4

(see also section 4.1). It is given by

n '2 a'3  (62)

where the relation between a' and (osculating) a is

f - aU (63)

This relation is exact, not merely first-order in J2 ' To first order - cf

equation (114) to be given in section 4.1 - we have

a i a' + 6a + 1K (a2 /p) 18h + 3e 2 (4h + 3f cos2)[ , (64)

with Sa given by (55), so that a' corresponds to a particular choice of mean

element a .

Two other comments are worth making about equations (55) to (61). First,
the quantities on the right-hand sides should all be regarded as mean, so that

strictly K, e, should be written throughout; being only first-order equations,

however, they are actually correct as they stand. Secondly, the presence of the

q-factor in (60) and (61) makes a simple complete expression for 6U impossible
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(cf the corresponding remark in section 2.3); complete expressions for S& and
6n are simple enough, however, but will not be given in this paper.

We now write down the perturbations, to O(e) only, that we shall require

in the sequel. For each element we express C and 6C in the form K4 and

KCI respectively, except that we cannot define M or UI in this way, as M

and U are not constant for an unperturbed orbit. It is convenient to drop e,

w, a and M in favour of t, n, U and n , and to introduce k-constants at

appropriate points. Then the formulae required are:-

a, 13 12(i cos 2-U+k a) + RE [ cos v-+ 3Fcos (5 + r) + 3T cos (- 0

...... (65)

i f 4 sin 213(cos 2-u + k.) + i [3 cos (5 + 7) + cos (2ii + v)]} , (66)

91 n cos 1 (67)

Q f  cos I f3 (sin 25 + k,) - i [18 sin 7 - 3 sin (U + Z) - sin (2U +v)J ,

...... (68)

-fi- (4 - 5f) sin Z, (69)

= 12 [3 (4H + 7) cos U + 7f cos 351 + 39 [6 (1 - f) cos (U + 7)

2 (1 -5f) cos (2u + ;) + 3f cos (3u + v) +kJ} , (70)

= (4 - 5f) cos W , (71)

S2-412 [3 (4i - f) sin u- + 7f sin 3u1 + 3e [2 ( - 3f) sin (ii + T)

-2 ( - 5f) sin (25 + ) + 3f sin (35 + ) + kn

...... (72)

U n' + , ie n' + JKi (4 - 5f) , (73)

U1 = -1 (6 (2 - 5f) sin 25 - e [6 (26 - 33f) sin;

- 3 (4 - 9f) sin (9 + jj) - (4 - 17f) sin (2u + Tr)]) (74)

and

Il~= ii I(2(i cos 2U + k n+ a [4i cos T,+ 31cos (U- + j) + 3fcos (29 + T)J}

...... (75)

NB. These formulae are only valid to O(e) ; also, ka is redefined in section 8.

._



19

The coefficient of sin V in (68) is three times as large as in (58), it

will be noted. The difference is due to the e-term in (49), which comes in when

the i-term in (58) is replaced by an N-term that (because it is linear with

time) can then be removed from AP and represented by , given by (67).

The quantity R that appears in (67), (69), (71) and (75) is a mean element

that, like all the mean elements, is arbitrary to the extent of a constant, Viz

the constant kn  that appears in (75). Since

= M +n' t

from (61), ie n' = M , it may seem natural just to take n = n' , but alterna-
tive assumptions may be preferable and will be considered at the end of this

section.

Formulae (69) to (72) are equivalent to formulae for the elements e and

W, Viz

e = 0, (76)

e J4 (2 [12h cos : + 3f cos ( + + 7f cos (25 + V)]

+ 3i [4h cos 2.v + lOf cos 2J + 3i cos 2(U + + kel)

. ...... (77)

l Ii (4 - 5f) (78)

and

I = 9 {2C- [12h sin - 3f sin (u + W) + 7f sin (25 + -)]

+ 3 [4h sin 27 - 2 (2 - 5f) sin 271 + 3f sin 2(5 + 7) + k)} (79)

where ke  k cos U + k sin i (80)

and
k = -k sin W + k cos . (81)

It is because of the e -factor in (79) that the non-singular l and T1 should

be used instead of e1  and w, ' but w is free of this factor - in other words,

w only has an O(Ke) effect, apart from its action in combination with n' in

(73), as (69) and (71) confirm. In fact the most satisfactory way to generate

(osculating) e and w from (mean at epoch) Zeo and 0 is by combining

formulae for eV, W. El and ni . such that
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= cos (Z0 + it) +K (82)

and

n U 0 sin (M 0 + Wt) + Kn , (83)

from which e and w follow by inversion of (1) and (2).

We can now generate perturbation formulae for quantities more closely

related to actual satellite position. It is convenient to express these formulae

by extending the suffix-! notation so far only used for orbital elements. We

start with r and, from (40) and (37), can write

2 si2 e3

r = a ( - e cos M + e sin M) + O(e )
ie
i r = a [ - (6 cos U + n sin U) + (C sin U - n cos U)2] + O(e 3 ) (84)

From (84) it then follows, as ir section 6.1 which we are ant.cipating, that to

O(e) ,

r I  (j/ ) a1 - I cos u + nI sin 5) + UI sin V , (85)

a formula equivalent to one given in Ref 27, Viz

6r = 6a ( - e cos v) - a 6e cos v + ae 6M sin v (86)

Now (85) reduces to

r I  i a i cos 25 - 6(h - k a  + i [12(3h - 2ka) cos

+ 9f cos (u + w) - 3k cos ii -3k sin ri]4 (87)

and this can be further reduced to the very simple formula

r = fcos 25, (88)

by making the following choices for kas kC and kn

k =h , (89)a

ka = (4h + 3f) cos Z (90)
and

k (4h - 3f) sin M (91)
n

Thus (89), (90) and (91) give 'preferred values' for these three constants and

they will be referred to as such throughout this paper.
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A few comments are worth adding before we pass from the perturbation in r

to that in u . First, the value of a that corresponds to the choice of ka
given by (89) is often known as the 'Kozai semi-major axis', from its use in

Ref 6. Second, this choice of k is certainly not the only useful one:
a

comparison of (65) with (64) indicates that S can be identified, to O(e)

with the exact constant a' by taking k = yh ; some authors also find it
a

convenient to take k a 0 Third, values of ke  and k corresponding to

the choice of k and k by (90) and (91) are given at once by (80) and (81),

viz

k = 4h + 3f cos 2Z (92)
e

and

k = - 37 sin 26 (93)

Fourth, the constants k , k, ke and k are not really 'constant' at all,

since @ has a secular variation, but k and k are multiplied by i in

(70) and (72), so their variation involves O(Ke) terms which we are neglecting

(see also section 9). Finally (and this ties up the last comment with an earlier

remark), it is sometimes convenient (eg in Ref 27) to suppress the secular

variation Z , even in (82) and (83), using for M a quantity that is really U ;

this involves the use of an incorrect value of f , and hence of F (from the

standard algorithm of section 2.5), but this can be allowed for by addition of

an extra term, viz -JSSft (4 - 5f) sin , to (87).

We now turn to u , and from (49) can write

u - U + 2e sin M + It e sin 2M + 0(e 3

ie
u = U + 2 (E sin U - n cos U) + It [(E2 n 2) sin 2U - 2En cos 2U + O(e3)

...... (94)

This gives, correct to O(e) , again anticipating section 6.1,

I I u1 +I2 (C sin -n cos G) + Ji{4u1 cos ( + [sin ( + V) + 4 sin ]

- nI cos (i + ;) + 4 cos rj} ,

...... (95)

which reduces to
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U, (6 - 7f) sin 25 E [6(8 - 9f) sin Z - (6-f) sin (u + W)

- 2(0 - f) sin (25 + ) + 3k sin U

-3k, cos U] . (96)

On substituting the preferred values of k and k , given by (90) and

(91), we obtain

=- ir {(6 - 7f) sin 25 - 29 (6(5 - 6f) sin -(3 -5f) sin ( + )

-(1 -f) sin (25 + )J " (97)

If w is suppressed in (82) and (83), an extra term is needed, viz

-9jit (4 - 5f) Cos

We are now equipped to derive the perturbations in the cylindrical polar

coordinates (r', u', c) introduced in section 2.5. From (43), (66) and (68),

we have that, to O(e) ,

= Isin 21 {(I ki) sin U + kS cosu l [2 sin (+) - 3 sin J}

...... (98)

If we make the preferred choice

k. = 1 (99)
1

and also k, = 0 (it is arguable that k should not have been introduced

anyway, since it should naturally operate as a 'coefficient of sin Ou' whereas

k and k. operate as coefficients of cos Ou ), (98) reduces to
a 1

c, = +R sin 21 2 sin ( + )- 3 sin ] . (100)

Now we know from (46) that we take

r; = r I  , (101)

so it remains to deal with u' . We define u' on the basis that u' and u

are identical; then (97) (44) and (68) give, with the preferred constants,

u; sin 29+ 4 [6hsin +fsin (U+) (102)

and this could also have been obtained from the formula, correct to O(e)
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6u' = 6U + Se (2 sin v + le sin 2v) + e 6M [2 cos v + e (2 + I cos 2v)

+ 6Q cos i , (103)

which is equivalent to the first formula on page 36 of Ref 27*.

From u' may be derived the quantity kl associated with the 'L'

coordinate referred to at the end of section 2.5, though we have seen that the

cartesian 'RLC system' of coordinates is less satisfactory than the cylindrical

'RUC' system given by r', u' and c . Thus (47) gives

i (104)

it being irrelevant, to first order, whether (102) is multiplied by r or r

on expressing in terms of a (rather than r or F ), however, we get

I =  a {2f sin 2U + i [48h sin + 7f sin (u + F) - T sin (2M +

(In (100), by contrast, r can be replaced by either r or L)

Preferred values have now been given for all the constants except k ,

introduced in (75). The value of k depends on whether or not it is regarded
n

as essential to preserve the familiar Kepler-third-law relation, ie to demand
-2 -3

that n a 3= (cf (4) and (62)). If we do want to preserve this relation, then

it follows at once from (65) and (75) that we must set k equal to k . Ifn a

we want to assign k and k independently, on the other hand, then the Keplera n (a

relation must be replaced by the more general formula

n 2 a3 1 - 3k - kn] (105)

It has been remarked that "it may seem natural just to take R = n' "Ir
(since n' = M ), and we have also seen that

a=a' ~'k ,I
a

from which it follows that

n-n k nn

But h , not , is the preferred value of ka , corresponding to the Kozai

semi-major axis, aK  say. This would lead to a 'mean mean motion' of no

D * This follows on replacing SL in Ref 27 by 6U + 69 cos i + e2 6M ; the last
term is O(e) and should have been included in the expression for 6L on
page 2 of Ref 27.
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practical use, so it is common practice * to combine k a h with k n i , ina n

which case

-2 -3 n,2 3 --n a = aK - u (lI -h) . (106)

The general relation connecting n, k and n' isn

= n' + Rn (11 k n - h) (107)

and we will use this to derive a value for kn that for much of this paper is not

merely 'preferred' but actually essential. The associated value of R is given

by

S= U ( f n' + by (73)) , (108)

the significance of this value being that it permits the second-order development

of section 4 to proceed on the basis that

2n f (cos 2U, sin 2U) dt

can be replaced by (sin 2U, -cos 2U), apart from the matter of integration con-

stants. Since w is given by (78), (107) now yields

k = j-(3- 4) , (109)

n

from which (105) gives

-2 3 (1 K (6 7f) (110)
n aK ( + (

If, on the other hand, k is not limited to the value given by (109), then (73),n

(78) and (107) lead to the general relation

U - n ffiK (6 - 8f - 3kn) . (l11)

We may regard the right-hand side, here, as defining KU, . since U was not

defined when the other were introduced.

* Kozai6 effectively adopts a set of k's as follows: ka and ke are as given
by (263) and (264) of section 8, such that ka agrees with our preferred value
(See section 8) to O(e) but ke has an 'h component' that, to O(e) , is double
our value given by (92); ki is 0 (of 1, here); kQ is 0 , as here; kw is
exactly as given by (93) here; finally kM (not defined till section 8) is
identical with k.
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4 SECOND-ORDER PERTURBATIONS IN OSCULATING ELEMENTS

For any element, , the secular rate of change may be expressed in the

form

= Z KJ j (112)

j=1

and the short-periodic perturbation in the form

6 = K j, (113)
j=!

generalizing the notation of section 3. We are now concerned with formulae for

Z2 and C2 but will be neglecting O(e) contributions.

The basic idea is to 'bootstrap' on the first-order solution, substituting

it on the right-hand sides of the planetary equations and re-integrating. The

planetary equations must be taken to O(e) in this process, since

K e = K ( + 6e)

where 6e =K eI + O(K2

and hence Ke terms lead to K terms without the factor e . A special

procedure, free of further integration, is possible for C a , and this is

developed first. It may be compared with a re-derivation of a2 by the general

procedure.

4.1 Perturbation in a (special method)

From (63) and (11) it follows that

a = a' + K a' q-2 (p/r)3 (f cos 2u + h) , (114)

this being an exact result. Recovery of the first-order a1 , given by (65) to

O(e) , is immediate on expanding p/r by (12), on the basis that

a' = (1 + k -h) . (115)

If we are to be able to write
o a ' K -- 2 /-3- -2a

oa = + q (p f cos 2U + 2h) + K 2(p r 2
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thare will be five sources of terms in a2  i) the 'a variation', lost on

replacing K by K; (ii) the generalization from a' to i , these being

connected by (115); (iii) the perturbation in (p/r) ; (iv) the variation in i

which affects f and h ; and (v) the perturbation in u . The contributions

from these sources are as follows, neglecting terms that are O(e) in a,

(i) - 2i f cos 2U + 4h)(f cos 2U + ka )a

icos 2u + a

(iii) 3i Cf cos 2U + Jh)(h + cos 25)

Civ) 9f (1 - f) (cos 2u - 1)(cos 26 + ki)

(v) kif (6 -7f) sin 2u

Summation of the contributions gives

a = 4a 2 cos 45 + f [5 91 - 3k + 3k.(1 - f)] cos 2u_

+ 1 [14 - 33f + 24f 2 - 6kah - 9kif( I - _f)]} (116)

The constant term here is of no great general importance, and in the next section
an arbitrary constant k2a is introduced, by equation (121), in analogy with ka

Comparison of (116) and (121) enables us to obtain the expression for k2a

appropriate to an interpretation of i as a' , ie to obtain the sec.nd-order

relation of a to a' . We set k to +h , therefore, and obtain
a

k2a + [(10 - 21f + 15f 2 ) - 9kif(l 1- ) (117)

An application for this result is found in section 9.7.

4.2 Perturbation in a (general method)

The starting point is the exact equation (23). From this it follows, using

(12), (51) and (52), that to O(e)

a - Kna I4f sin 2U + e [4h sin v - f sin(u + w) + 21f sin (2u + v)]

......(118)

The object of replacing sin 2u by sin 2U in the main term is to permit first-

order integration with respect to time (as opposed to changing the integration

variable to true anomaly, by invoking (54)). The first-order solution then follows

at once in the form
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6a= Ja {2 cos 2U + Z [4 cos v 1 - cos (5 + G) + 7f cos (2ii ) ]i '

(119)

which is equivalent to (65), with k a 0 , if allowance is made, by (53), fora

the difference between cos 2U and cos 2U

It is now possible to expand A , as given by (118), in terms of the first-

order reference solutions for a, e, i, w, U and n . Thus there are six

contributions to the total A which are second-order and they may be de.toted by

A a, A etc, where

a e

Remembering that K is a function of a , and that we are neglecting 0(K e)

perturbations, we obtain

A a  - KA (f cos 2u + ka)

A A - 2K2na [4h sin v - f sin (u + w ) + 21f sin (2u + v)] X

x [12h cos v + 3f cos (u + w) + 7f cos (2u + v)]

A. = KA ( - f)(cos 2u + ki)

2A W = K na [4h cos v + f cos (u + w) + 21f cos (2u + v)] x

x [12h sin v - 3f sin (u + w) + 7f sin (2u + v)]

A = - lKA (2 - 5f) cos 2uU

and

An = - l4KA (f cos 2u + kn)
nn

It is immaterial whether the quantities on the right-hand sides are regarded as

osculating or mean, so 'bars' are omitted for convenience. The value of k mustn

be taken from (109), however.

It now follows, after some tedious reduction, that the totl second-order

contribution to a is given by

AA = naf 2f sin 4u + [5 - f+ A  0 f)
- 3 - f) sin u . (120)

.. .. = r ,i, = .... . . . . . . . , . .. ,,0. . . ..
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The formula for second-order 6a follows immediately, and we may write

a2 = i i cos 4U + ? 5 - 9f 3k a  f)] cos 25 + 3k2a

...... (121)

where it has been convenient to introduce a second-order constant, k2a , akin

to k . Clearly (121) is in agreement with (116).a

Taking the preferred values of h and I for ka  and ki respectively,

we get

a2 = , (f2 cos 4U + 5fh cos 2U + 3k 2a) , (122)

where the preferred value of k2a , as we shall see in section 6.1, is given by

k h _ 2 (123)
2a

ie by
2a2

4.3 Perturbation in i

The starting point is the exact equation (25), which to O(e) gives

i= - Kn sin 2i 2 sin 2U - e [sin (u + w) - 7 sin (2u + v)] (124)

The first-order solution follows at once, in the form

6 i = 6K sin 21 (3 cos 2U - e [3 cos (5 + Uo) - 7 cos (2a + {)]j (125)

equivalent to (66) (with k.i = 0)

We expand i , as given by (124), in terms of the first-order reference

solutions for a, e etc, just as in section 4.2, obtaining six second-order

contributions to Ai , Viz

00
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A -2Ki (fcos2u+k) ,
a a

• K2n

Ai ffi n sin 2i [sin (u + w) -7 sin (2u + v)] x

x [12h cos v + 3f cos (u + w) + 7f cos (2u + v)]

i f Ki cos 2i (cos 2u + ki)

= 2A i : K n sin 2i [cos (u + w) + 7 cos (2u + v)] x

x (12h sin v - 3f sin (u + w) + 7f sin (2u + v)]

Aui = -K1 (2 - 5f) cos 2u

and A i i- 1Ki (f cos 2u + k)

n n

Tedious reduction, as for Aa , leads to the total Ai given by

Ai -- 2K2n sin2in 4u + 6 f + 4k a - k i(0 - 2f] sin 2u

...... (126)

from which the formula fo2 second-order 6i follows immediately; thus

i2 s - Bin 21 ((3 + 5f) cos 4u- + 12 [f + 4ka - ki(0 - 2f)] cos 25 + k2i }  ,

...... (127)

with a convenient second-order constant introduced.

With the preferred values of ka and ki , we get

i 2  - sin 21 U3 + 5b cos 45 + 36(1 - b cos 2ii + k2i ] , (128)

where the preferred value of k2i is given (as we shall see in section 6.3) by

k 2 i f 33 - 49f . (129)

4.4 Perturbation in Q

The exact starting equation is (26), which to O(e) gives

- - jKn cos i {2 ( - cos 2U) + e (6 cos v + cos (u + w) - 7 cos (2u + v)J} •

...... (130)
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The first-order solution follows at once, and is composed of a secular term,

with QI given by (67), and a periodic term in the form

6 - +i cos I {3 sin 2U - e [8 sin v + 3 sin + 7 sin (25 + ;>3]

.......(131)

equivalent to (68) (with k, 0).

On expanding relative to the first-order reference solutions for a,

e etc, we obtain the following six second-order contributions to

Aa 6= - 2KL (f cos 2u + k)
a a

Ab = - K2n cos i [6 cos v + cos (t + w) - 7 cos (2u + 03 x

e

x [12h cos v + 3f cos (u + w) + 7f cos (2u + v)]

= - Lf (cos 2u + k i )

A K n cos i [6 sin v - sin (u + w) - 7 sin (2u + v)] x

x [12h sin v - 3f sin (u + w) + 7f sin (2u + v)]

A = -Q (2 -5f) cos 2u
U

and Aan = (f cos 2u + k)

The total A6 is given by
AL= -K2n cosi (3 + f) cos 4u - 3(2f - 4k - k.f) cos 2u

+ (15 - 19f 12ka - 3k.f - 9k

.......(132)

thus there is a secular component of the second-order AP , and kn  has been

left in (132) because the value required depends on the chosen ii , which appears

explicitly in SI We get

Q2 R cos i (15 - 19f - 12k a - 3kf - 9k n ) (133)

and

Q - cos i [(3 + f) sin 45 - 6(2f - 4k a  k.f) sin 2U] (134)

no k 2 constant being required (it would be the coefficient of sin Ou !)
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With the preferred values of ka and ki , we get

2 = - *R cos i (3- 4f -9k) (135)

and

a 2 = - 2 cos -(3 + ) sin 45 + 6(4 - 7f) sin 2G] (136)

With our usual value of k , we get (of (271) in section 9.5)

2 T cos (3 - 4) (137)

4.5 Perturbation in

The exact starting equation is (31), which to O(e) gives

- - Kn {(4h + f) sin U + 7f sin 3U

+ 2e [(4 - 5f) sin w + (7 - 8f) sin (u + v)

- ( + 2f) sin (2u + w) + 17f sin (3u + v)]}

...... (138)

The first-order solution follows at once, in a form consisting of a secular 
term,

with 1 given by (69), and a periodic term

i= K {6(4h + f) cos U + 14f cos 35 + 3i x

×[2(7 - 8f) cos ( + V) - 2(1 + 2f) cos (2ii + w) + 17f cos (3ii + )]I

...... (139)

equivalent to (70) with k taken as* 2(4h + f) cos w

On expanding I relative to the usual first-order reference solutions,

we obtain:

• This k and the corresponding k (see section 4.6) are equivalent to the

2 (effective) k and k of Ref 25 that we encounter in section 5.2.
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- -2KZ (f cos 2u + k) ,

A - - hK 2n [(4 - 5f) sin w + (7- 8f) sin (u + v) - (1 + 2f) sin (2u + w)

+ 17f sin (3u + v)] [12h cos v + 3f cos (u + w) + 7f cos (2u+v)]

i jK2nf (I - f)(5 sin u - 7 sin 3u)(cos 2u + ki )

K- K2n [(4 - 5f) cos w - (7 - 8f) cos (u + v) -(I + 2f) cos (2u + w)

- 17f cos (3u + v)][12h sin v - 3f sin (u + w) +7f sin (2u + v)]

AU - AK 2n (2 - 5f) [(4h + f) cos u + 21f cos 3u] sin 2u

and

A Z- - JIKZ (f cos 2u +k n )

The total A! is given by

z- K2 n 15f (14 - 17f) sin 5u + [72 - 346f + 449f 2 + 336fk a - 168k. f(1 - f)]

x sin 3u - 2[108 - 200f + 77f 2 - 24ka (4 - 5f) - 60k.f (i - f)] sin u I

...... (140)

whence

E2 " - {3f (14 - 17f) cos 5u + [72 - 346f + 449-2 + 336fka

- 168kif(l - f] cos 3u - 6[I108 - 200f + 77f 2 - 24k (4 - 5f)
a

- 60k~f(1 - ) Cos a } '

..... (141)

no constant being introduced.

With the preferred values of ka and ki , we get

t2 -T 3f (14 - 17i) cos 5 + (72 - 178f + 113f 2 ) cos 3a

- 6(12 + 4f - 43f 2) cos ii . (142)

4.6 Perturbation in n_

The exact starting equation is (32), which to O(e) gives

- Kn 1(4h - f) cos U + 7f cos 3U + 2e C(4 - 5f) cosw

+ 5( - 2f) cos (u + v) - (0 + 2f) cos (2u + w) + 17f cos (3u + v)])

...... (143)
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The first-order solution follows at once, in a form consisting of a secular term,

with n I given by (71), and a periodic term

n K 16(4h - f) sin U + 14f sin 3U + 3 x

[10(1 -2F) sin (71 + - 2(1 + 2f) sin (2d + Z) + 17f sin (3I + 1 )] '

...... (144)

equivalent to (72) with k taken as 2(4h - f) sin M

On expanding A relative to the usual first-order reference solutions, we

obtain:

A W -2K (f cos 2u + k)
a a

A = hK 2 n [(4 - 5f) cos w + 5(0 - 2f) cos (u + v) - (I + 2f) cos (2u + w)
e

+ 17f cos (3u + v)][12h cos v + 3f cos (u + w) + 7f cos (2u + v)]

Ai = - IuK2nf (I - f) (cos u - cos 3u)(cos 2u + ki )

A n = - hK2n [(4 - 5f) sin w - 5(1 - 2f) sin (u + v) - (I + 2f) sin (2u + w)

- 17f sin (3u + v)][12h sin v - 3f sin (u + w) + 7f sin (2u + v)]

AU = K 2n (2 - 5f)[(4h - f) sin u + 21f sin 3u] sin 2u

and

1- 0.Kj (f cos 2u + kn )

The total Ai is given by

AA - - K2n (Sf (14 - 17f) cos 5u + [72 - 310f + 395f 2 + 336fka

- 168kif(l - f)] cos 3u - 2(84 - 224f + 155f 2

- 24k a(4 - 7f) - 84kif( - f01 cos u (145)

whence

n2  - (3f (14 - 17f) sin 5U + [72 - 310f + 395f 2 + 336fk a

- 168k. f(I - f)] sin 3U - 6[84 - 224F + 155f 2

- 24ka(4 - 7f) - 84kif( - f)J sin U , (146)

no constant being introduced.
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With the preferred values of ka  and ki , we get

n2  - A {3f (14 - 17f) sin 5U + (72 - 142f + 59i
2 ) sin 3U

+ 6(12 - 41 + 13i2) sin U (147)

4.7 Perturbation in (a + w)

From the exact equations (27) and (28) it follows that, to O(e)

+ JKn {8 C(3 - 4f) - (1 - 4f) cos 2U] + e [2(38 -5f) cos

+ (4 - 17f) cos (u + w) - 7(4 - 17f) cos (2u + v)]}

...... (148)

The first-order solution follows at once; it consists of a secular term, given

by

01 + R (3 - 4f) ,(149)

and a periodic term in the form

6o + 6W f -hK 112 (1 - 4i) sin 2U - [6(38 - 51i) sin

+ 3(4 - 171) sin (U + 7) - 7(4 - 171) sin (2ii +) (150)

This is equivalent, by (53), to a result that could be added to equations (65) to

(75), viz

a1 + ! - (24 (I -4i) sin 2u- - [6(38- 511) sin

- 3(4 - 15i) sin (U + Z) - (4 - 23) sin (2 + )]} (151)

On expanding (6 + 6) relative to the first-order reference solutions as

usual, we obtain:

A (6+) -2K ( + 6)(f cos 2u + ka )

A e(6 + ) K K2n [2(38 - 51f) cos v + (4 - 17f) cos (u + w)

- 7(4 - 17f) cos (2u + v)] [12h cos v + 3f cos (u + w)

+ 7f cos (2u + v)]

A + ) - - 4K2nf (1 - f)( - cos 2u)(cos 2u + k.) ,
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(+ 0 ) - ogK2 n (2(38 - 51f) sin v - (4 - 17f) sin (u + w)

- 7(4 - 17f) sin (2u+ )][|2h sinv - 3f sin (u +o)

+ 7f sin (2u + v))

AU ( + i - n (0 - 4f)(2 - 5f) sin 22u

and

A (& + - 1W (& + 6)(f cos 2u + kn)n

The total A(& + ) is given by

A(a + ) = K2n {(24 - 4f - 73f 2 ) cos 4u - 4[f(64 - 51f) - 24ka ( - 4f)

- 48kif( - f)] cos 2u + ((432 - 1052f + 637f 2)

- 24(3 - 4f)(4k + 3k) - 192k.f(] - f))

a n

...... (152)

where a term in k has been retained in the secular component for the samen

reason as with A . We get

(a 2 = ((432 - 1052f + 637f 2 ) - 24(3 - 4f)(4k + 3k n ) - 192k.f(l - )]

...... (153)
and

(a + 0W) 2  a - (24 4f - 73y 2 ) sin 4i - 8(f(64 - 51f) -24ka(i - 4f)

- 48k( - )] sin .

...... (154)

With the preferred values of k and k i , we get

(a + w)2[(144 - 428f + 253f 2) - 72k (3 -4f)] (155)

and

(a + o) 2  a {(24 - 4f - 73f2) sin 4U + 8(24 -148f + 147f) sin 2u

...... (156)

and if we use our usual value of k we get
n

(' ) - (288 - 724f + 515f 2 ) (157)
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4.8 Perturbation in n and in fn dt

To be able to analyse the perturbation in U , as ve shall in section 4.9,
t

we need a formula for the perturbation in f n dt , to be able to combine with

0
A(a + w) , following (20) and (3). Thus we first need the formula for n2  that

corresponds to the perturbation in n .

The perturbation in n could be obtained by the usual method, involving

integration, but it is more direct to obtain it from the perturbation in a ,

making use of the fundamental Kepler relation (4). This is possible even though,

because of choosing independent k-constants for n and a , n and i will not

in general satisfy the relation themselves. We introduce I and 2 , therefore,

dependent only on f (so long as we work only to first order in e), such that

-2 -3 *12

n a = +(I + i K 2)  
(158)

This is equivalent to the relation
2 3 -2 -3 - i2)-

n a n (I 1 + 2' , (159)

where a strong reason for introducing the relation in this form, rather than

reciprocally, is that the final expression for 12 - see (185) - becomes very

simple; reciprocally, the relation is

n2-2 -3 [1 - K_ _2 (2 U] (160)

The general first-order result, previously given by (105), may now be written in

the form

Il = 3 (kn - ka) (161)

which with the preferred ka  and kn  reduces (of (110)) to

= (6 -7f) . (162)

But

-2a + +K a + K a2
and

S+ n -2
n fi +K n I+ Kn2
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from which it follows that

2 3 -2 -3 ~ 3+~-2n a n a (1 +KaI + Ka 2 ) ( + 1 + 2) , (163)

on defining a to be a etc for convenience. On comparing (160) and (163)

it follows that

1 - (3a] + 2il) (164)

and

= 12 .6ii~ 2
12 6aI + 6aIn I + 3nI - 3a2 - 2n2 (165)

There is nothing new in (164), which just leads to (161) again, but (165)

leads to the desired formula for n2 . To see this, we start with formulae for

a, . n I and a2 , which follow from (65), (75) and (121) respectively, where-

upon (165) gives

2n 2 + p2 ffi  7 2 cos 4U - 4i [2(5 - 9f) - 12ka + 6k.( - ) - 9k cos 2u

+ 3 (5f2 + 16k 2 - 24k k + 18k 2 - 8k . (166)
(f a a n n 2a)

(It is legitimate to leave kn in the coefficient of cos 2i , in spite of the

remarks of section 3, because it arises through expansion of (165) and not from

integration.)

But 112 must be independent of U , so we must in consequence of (166) be

able to write

n2  = A cos - 41 [2(5- 9i) - 12ka + 6k. (I- f)- 9kn] cos 26 + 16k 2 )J

...... (167)

where the introduced constant k2n is such that

112 1 81 (5 2 + a 4 - 24kk + 18k2 - 8k 2a) - 2kn (168)

With the preferred values of ka, ki and kn , (167) reduces to

n2  r'ii 7f2 cos 45 + 8f (7 - 9f) cos 25 + 16k2n) (169)

and (168) to

'2 + * (40 - 104f + 73f2 - 8k 2a) - 2kn (170)
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t

To obtain the perturbation in f n dt , we observe that

0

S n + K nI +K n2  , (171)

where n1 - cf (75) and (119) - is given by

n,= - I {f cos 2U + k + je [4K cos -f cos (5 + @) + 7f cos (25 + )]}.

...... (172)

Then writing the required integral as a sum of secular and periodic components,

we have
t

fn dt (n + Aj) t * fI + i2 f2 (173)

where (172) and (169) imply that

AVE Ij K k n k2n (174)

For fl, we integrate the periodic terms of (172), obtaining

= 31 sin 25 + e- [12h sin 7, - 31 sin (7a + F5) + 7i sin (2ii + -;I

. ...... (175)

For f2 ' similarly, we integrate (167) to obtain (since kn must necessarily

be given its preferred value),

f 2 = 7f2 sin 4Q + 16f [4 - 3f + 6ka - 3ki(! - I sin 25 /  , (176)

a- . as

which - or from (169) directly - with the preferred values of ka and k. as

well, reduces to

f2 ff iw {7f2 sin 4U + 16f (7 - 9_) sin 25)} (177)

4.9 Perturbation in U_

From (20 and (3) we obtain at once, on combining (149) with (174) and (150)

with (175), the first-order secular result for U1 , as given by (111), and the

periodic term given by
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U1  - -9 {6(2 - 5f) sin 2U e L6(26 -33) sinV

+ 3(4 - 1f) sin ( + - 7(4 - 11f) sin (25 + (178)

which is equivalent to (74).

The expression for U2  is given by combining (154) and (176); thus

U (6 - 13f 2) sin 4G - 2 1(40- 33f) - 12k (2 5f)U2 a

- 30kIf( - f)] sin 25} . (179)

With the preferred values of k and k. ,

= , {(6 - f - 13f2) sin 4u + 2 (24 - 1067 + 93f 2) sin 2U, . (180)

U2

Again, the general expression for U2 is given by combining (153) with the

second-order component of AH , given by (174); thus

..-. .432 - 1052T + 637i2) -24(3 - 4i)(4k +3k) - 192k.f(! - f) + 48k 1  .
U2 32  ~ L02f+63f )

'4( f)4a n12n

...................................................(181)

When U is zero, through k having its preferred value, it is obviously~n
desirable for U2  to be zero as well, and (181) indicates that this requires

k{n f(100 - 131f) - 96k a(3 - 4i) - 192kW - f) " (182)

With the preferred values of ka  and ki , this gives

k 2n (288 - 724i + 515- 2 )  (183)

The associated value of 2 is given by (168). Taking k2n as given by

(182) we find

P2 =  T 1 (324- 814f + 5332 120k a (3- 4i) 4 72k - 96k.f ( - 36k2a}

...... (184)

but with the preferred values of k , ki  and k2a we get a tremendous simplifi-
a i2

cation, Viz to

V2 f (4- 19f) . (185)

It may, however, be considered undesirable to tamper with the Kepler rela-

tion, in which case 12 must be zero and we cannot force 2 to be zero. But,

for (168) to give zero, we require
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k = (5f2 + 16k 2 - 24k k + 18k 2 -8k (186)
2n '~a a n n k2a) 16

and then (181) gives

U2  H f(216 - 526f + 341f 2 ) - 12(3 - 4f)(4k + 3k ) - 96k.f(I - f)

_a n 3

+ 72k 2 - 108k k + 81k - 36k (187)a a it n a

Instead of substituting our preferred valuep of k and k in (86), ita n

is instructive to set k = k n= h , with k2a given by (117), ie apprcoriatethensrutne'o etk a n

to a = a' , since we C-LL then interpret :a- the exact constant n'

resulting expression for k2n is given ay

k2n = - [(40 - 48-1 - 25 - 72k.f (1 - (188)

with the preferred k.1

k = - 2r (40 - 120f + 57f2 (189)

2n

5 COMPARISONS WITH OTHER AUTHORS' RESULTS

Of te various papers mentioned in section ', compariscns will be made

only for Refs 22, 25 and 26. The two papers ftom the French school, one by
25 22

Berger and Walch and the other by Bretagnon , are considered together in

section 5.2. Since they both give results for e and w , rather than and

n , suitable formulae for comparison are first derived in section 5.1. The

remaining paper, by Kinoshita2 6 , is considered in section 5.4 after section 5.3

has given results needed for the comparison, namely, for the quantities Va and

/aT - e2) Cos i .

5.1 Second-order analysis for e and w

Formulae for second-order perturbations in the elements e and w are

necessarily much more complicated than those in and n since we can no

longer confine ourselves to the lowest power of e in the expansions. We use

our results for C and n to derive the formulae we require for e and W

employing the notation e1 , e2 etc as in (112) and (113).

The first-order formulae have already been given, viz by (77), (78) and

(79) for e 1 WI and wI respectively. It is convenient to split e I and w

according to the formulae

e, = e10 + 9 e1 1 (190)
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and
W e (W10 + W 1 ) , (191)

where elO0 ell, W10 and w are all independent of . Since we shall

require two components for both e2 and 2 it is convenient to split these

quantities in a similar way, writing

e 2  = (e2 0 + e e2 1) (192)

and

2= - (20 + 9 W2 1) (193)

It will be observed that the singularity underlying the use of e and w has

made e2 of order 9 , something not intuitively to be expected perhaps, while

making w 2 of order e

We shall see, in (205) and (210) following, that e20 and w20 in fact

say nothing about true second-order perturbations, since they are constrained to

algebraic values related only to eI and w All the information is in e

and 21 ' which is why two sets of terms are required for each of e2  and 2

We start by substituting in (1) and (2) the expansions

e = e + K e + K2 e2  (194)

and

= + K w + 2 e2 (195)

and relating the resulting expressions to the corresponding expansions of

and n . This gives

= eI cos r - i 1 sin , (196)

T11I = e1 sin M + w C1 cos , (197)

2 = (e 2 - 2)cos -( 2 
+ e 1) sin I (198)

and ( 2) sin 3 + (5 w + e Wi)  Cos (199)

2= I~ 2 -ieWlsnW( 2  e 1  1 o 39

The formulae for C2 and w2 are of course known, whence E2 and 02 are also
known, where

E2 = 2 Cos + n2 sin M (200)

and
02 = - &2 sin 6 + n2 cos . (201)



42

The definitions involved in (200) and (201) will be extremely useful.

The basis for the notation is that the right-hand sides, when the 2-suffices

are omitted, give 9 and zero respectively. It is now immediate that

E e 2 (202)
2 = 2 -'Uw 1

and
0 2= e w 2+e I . (203)

We can now substitute (192) and (191) in (202) to obtain

E =2 = (e 20 + i e 21) - p (W 10 + ii 2 1 (204)

Since there are no e_ terms in E 2  - for economy of space its expression is

not given - it follows from (204) that

e2  = 2 (205)

and this is the first 'constraint' referred to earlier. An explicit formula

follows at once from (79), from which the w 0and w 1 components of wIare

defined by (191). We get

5 6(2 2 61fi ) cos 2 - 240Nh cos 25~ + 168ih cos 2(i + V

+ 9f2 cos 2(i + @) - 2 cs 4 + 4-92 cs2(25i +4U

72Kh cos 2;- - 2(72 - 216i + 912}. (206)

From identification of the e terms of (204) we ;ee that the other

component of e 2  is given by

e 1= E 2 + W10 W~ 1 (207)

On evaluation of the right-hand side, we get

-- 2

-9(16 - 48i + 39 qi) cos N~ + 6i [134 - 1891 48k + 24k.(I f)]X

aa

- 192Kh cos (25 + TV) - 36fH cos (~-2M) + 36fi cos (Mi + co3)

-81fi cos (4 D-63f2 Cos (45i + 3-7) + 6k W[12i sin 1

-3f sin (u+i + 7f sin (2U + )]} (208)
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But the preferred k - see (93) - is a multiple of sin 2Z , causing k

terms to combine with earlier terms of (208).

In the same way we can substitute (190), (191), and (193) in (203) to

obtain

02 e (W 20 + ! W 2 1) + j-1 (e10 + 9 e11)(Wo10 + e W 11) , (209)

from which, since 02 contains no 9- terms,

60= - '10 '10  (210)

This is the other 'constraint' and it leads to the explicit formula

f 20 -1- 6(24 - 72f + 61f 2 ) sin 2 + 168fh sin 2(a + V)-2 22sn0(- 2)s 7 2 h2

9f2 sin 2(U + M) + 49f 2 sin 2(2U + -) - 72H sin 2I .

. . (211)

Also, from identification of the go terms of (209) we have

W 2 1 = 02 - e10 Wo11 - e11  O 1 (212)

evaluation of which gives

S21" * 6 [96- 216i + 101if 2 - 96k h- 72k.f(l - f)] sin -

9(16 - 48f + 39- 2 ) sin 3- 18f [10 13f - k + 4k (

x sin (U + Z) - 2f [70 - 59f + 168ka - 84ki(I - f)] sin (2U + -)

- 192fh sin (2U + 3V) - 36fh sin (V - 2M) + 27- 2 sin (30 +

- 159i 2 sin (49 + -) - 63f 2 sin (4U + 3-) - 3k [12K sin

e
- 3f sin (5 + U) + 7f sin (25 + T)] - 3k [ [2S cos i

+ 3f cos (0 + M) + 7f cos (25 + V)]1

...... (213)

Again the ke and k terms combine with earlier terms, if preferred values aree W
introduced.

5.2 Comparison with Berger and Walch, and with Bretagnon

Refs 25 and 22 both tabulate large numbers of terms in a compact manner, of

which only a small number are involved in the comparisons. A convenient reference

M- .. A
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system is desirable, and the following is adopted: BW P.1 refers to line 1 of

page P of Ref 25, while B P.pqn refers to the particular line of the appro-

priite table on page P of Ref 22 that is designated by the given values of

p, q and n . Both papers in fact tabulate numerical coefficients against the

trigonometric arguments (pw + qM) and cover (in a single line of tabulation)

more than just the lowest power of e that is relevant here (the powers of e

increase in steps of two). The index n relates to powers of f (= sin 2i) that

are allocated different lines of Ref 22 though appearing on the same line of

Ref 25.

To get agreement, it will be found that we require ka = ki = 0 at all

times in Ref 25, but various values, that will be stated, for Ref 22. The

comparison proceeds through the elements in the usual order, except that e and

w are held over till last.

Starting with a , then, the second-order formula given here as (121)

(with k2a = 0 ) is in agreement with BW 122.18 (for cos 45) and (with

k = k. = 0 ) BW 122.15 (for cos 25). It also agrees with B 16.444 ,a 2.

B 16.222 and B 16.224 , so long as k is set to -2h and k. to 1.a 3.

For i , the second-order formula given here by (127) (witll k2i = 0 ) is

in agreement with BW 122.47 and BW 122.45 . It also agrees with B 22.440

B 22.442 , B 22.220 and B 22.222 , so long as ka is set to -2i and k.

to -2

For 0 , we have a secular effect as well as short-periodic terms. The

contribution to 0 , represented here by (133), is the same as is given by

BW 110.20 , so long as we set k (as well as k and k. ) to zero; the samen a 1

value is indicated by Ref 22 through reference to Brouwer's paper (see the second

equation on page 394 of Ref 11). For the periodic effect, the formula given

here as (134) is in agreement with BW 122.53 and BW 122.51 ; for agreement

with B 22.440 , B 22.442 , B 22.220 and B 22.222 we must set ka to -1ih

and k. to -11

For U , we have a seci lar effect that (for an unmodified Kepler relation)

is given here by (187), and this agrees with the combinatioa of BW 110.25 and

BW 110.30 if k and k are set to zero. Bretagnon (page 11 of Ref 22)
n 2a

gives the BW 110.30 formula, ie for R2 , explicitly, on the grounds that

there was an error in Brouwer's paper (last equation on page 393 of Ref 11); as

we shall see in sections 5.4 and 9.7, the discrepancy amounts to an implicit use

of a non-zero k2a by Brouwer - in giving the explicit formula, Bretagnon
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unfortunately introduces two real errors, since he writes J instead of J2

and, less obviously, halves the main term, which should contain 27/4 and not 27/8.

For the periodic effect, the formula given here as (179) is in agreement with

the c mbination of BW 123.14 with BW 123.39 and of BW 123.2 with BW 123.27 ;

again, the three combinations giveTi by B 28.440, B 28.442 and B 28.444 are

also easily verified, and so are the three given by B 28.220, B 28.222 and

B 28.224 , so long as we set ka to -lJh and ki to -J

We complete the comparisons by looking at e and w together, calling on

results from section 5.1. We 'iave results of two orders of e to check, as has

been explained. The lower-order formulae are given here by (206) and (211), and

they are in immediate agreement with terms given by BW 122.22, BW 122.27,

BW 122.29, BW 122.35, BW 122.37 and BW 122.39 , for e20 , and BW 122.56,

BW 123.4, BW 123.12 and BW 123.16 , for w20, constant terms being ignored;

the same results are given by B 16. 20, B 16. 22, B 16. 24, B 16.222, B 16.224,

B 16.242, B 16.244, B 16.424, B 16.444 and B 16.464 , for e20 , and B 28. 20,

B 28. 22, B 28. 24, B 28.242, B 28.244, B 28.424 and B 28.464 , for 2 0

The higher-order formulae are given here by (208) and (213), but two

corrections are needed before they give agreement with BW 122.21, BW 122.23,

BW 122.26, BW 122.28, BW 122.30, BW 122.33, BW 122.36, BW 123.38 and BW 123.40

for e2 1 , and BW 122.55, BW 122.57, BW 123.1, BW 123.3, BW 123.5, BW 123.9,

BW 123.13, BW 123.15 and BW 123.17 , for w21 * First, allowance has to be

made for carry-over terms from the lower-order formulae; these arise because the

argument is u here but U in Ref 25. Secondly, non-zero values have to be

set for k and k ; we get the desired agreement if we take* 2f cos 2; + 8Ae

for k and -2f sin 25 for k . Ref 22 gives the same results (assuming thee

same ke and k ), the e2 1 terms being from B 17. 10, B 17. 12, B 17. 14,

B 17. 30, B 17. 32, B 17. 34, B 17.212, B 17.214, B 17.2-12, B 17.2-14, B 17.232,

B 17.234, B 17.252, B 17.254, B 17.434, B 17.454 and B 17.474 , but we have to

take ka = -Jh and k. = 0 when pq = I , ka = -lJh and k. = 2 when pq = 21,

and k a= -h and k. = + when pq = 23 . For the w21 terms agreement is
a

obtained, similarly, from B 29. 10, B 29. 12, B 29. 14, B 29. 30, B 29. 32,

B 29. 34, B 29.212, B 29.214, B 29.2-12, B 29.2-14, B 29.232, B 29.234, B 29.252,

B 29.254, B 20.434, B 29.454 and B 29.474 , subject to the same assumptions

concerning k and k.
1I

* These values of ke and kw are actually O(e) truncations of the ke and

kw that are implicit in Refs 22, 25 and 26; they are defined such that the
time-averages of 6e and 6w are zero, and the full expressions can be
obtained from section 9.
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This paper has so far not presented a formula for the second-order secular

perturbation in w , since this perturbation is O(Ke) in its effect on satellite

position (apart from the effect in combination with M , which is allowed for by

U ), as explained in section 3; W2 is 0(K) in fact, as we shall see, whereas

S20 contributes an O(K e 2 ) term to 6w and w2 1 contributes an O(K e- l)

term. However, it is perhaps worth deriving, and checking, a formula for 2

so that the secular perturbations are all known to O(Ke) - see also section 9.6.

We can start with Merson's formula for s , given by equation (A-27) ofsec

Ref 7. This yields

W2 = n (4 - 5f); (214)

the underlying values of the k-constants here are the Kozai values, Viz

ka = h, k. = 0 and k n h . From consideration of the (first-order)

expression for 7 , given by (78), we can obtain the general contribution of

the k's, from which the general formula must be

=M 2 = t(288 - 676f + 3952 - 12(4ka +3 )(4 - - 1 -

...... (215)

We now put ka k. = k = 0 , to obtain a result which agrees with BW 110.25.

In terms of the preferred constants of the present paper we derive

2= - A (192 - 476f + 325f 2 ) . (216)

5.3 Second-order analysis for a and a general result for a(l e 2) cos2 1

If YT is denoted by a ,the (second-order) formula for a2 is easily

obtained.

The basic identity is

a+ K I I a i 2 a+ a, + i2 a2

which yields the first-order relation

and the second-order relation

21 2 2 a
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Taking aI and a2 from (65) and (121), we get

a 5i2 cos 45 + 4f [2(5- 9f) 9ka +6k a(0-)] coB 2;

3(f 2 +2k 2  8k _8
a 2a

...... (217)

We also need to know how the quantity a(1 - e2) cos 1 varies, or rather

its square root which we denote by B . Now a(l - e ) is simply p , the

semi-latus rectum of the osculating elliptic orbit, and it is an elementary
2

result that Up h , where h is the angular momentum of the satellite's

motion relative to the centre of the earth. Clearly h acts normally to the

orbital plane, so h cos i is the angular momentum about the earth's axis. But

this is constant for the force associated with any axi-oyrnet -ic potential, ie

for any zonal harmonic. Also h cos i = 8 , so our result is that 8 , like a'

and n' , is an absolute constant of the motion in the J2 field.

5.4 Comparison with Kinoshita

Appendix B.1 of Ref 26 lists the second-order short-period perturbations
2

due to J2 . There are many terms in each of the five formulae given, and a

convenient reference system is to let KB-P.t denote term t of Kinoshita's

page B-P

The five formulae relate, in order, to elements that identify with F, T,

U, D and /ja in the notation of the present paper. A sixth formula is

unnecessary since Kinoshita's sixth element is A/{ia(I - e2) cos i , and we

have seen that this is unperturbed. To get agreement we again require

k af= k. = 0 , with k also zero for secular quantities. (Like Berger anda i n

Walch, and Bretagnon, Kinoshita expresses results in terms of M , rather than

v , so that his mean elements are true time averages.)

We start with & 2 ' then, finding that the second-order formula given

here as (141) is in agreement with KB-2.8, KB-3.4 and KB-4.1 . For n2

formula (146) here agrees with KB-5.6, KB-6.3 and KB-6.10 . For U2 , (179)

here agrees with KB-8.7 and KB-9.1 ; also U2 given by (187) agrees with

the combination of the fourth and fifth formulae of KB-53 , so long as we set

k2a to (12 - 30i + 25f 2 )/12 , a value that can be obtained empirically but

which is confirmed by the formula for 4Fa . (The fifth formula of KB-53 , on

its own, agrees with W2 I as given by (215) with every k set to zero.) For

2 (134) here agrees with KB-10.9 and KB-10.14 ; also f2 given by (133)
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agrees with the sixth formula of KB-53 For /s , (217) here agrees with
KB-12.8, KB-12.13 and KB-13.2 , if k2a is assigned precisely the 'empirical'

value just quoted. (Translated into k2n , by multiplication by -11 in accord-

ance with ( 86 ), this k2a fully resolves the Brouwer-Bretagnon discord

remarked in section 5.2.)

This completes the tie-up between the present results and those of preced-

ing papers, apart from some results for (untruncated) secular and long-periodic

perturbations which are derived and verified in section 9.

6 SECOND-ORDER PERTURBATIONS IN POSITION

To obtain perturbations in the cylindrical polar coordinates described in

section 2.5, it is essentially a matter of combining existing results, no

further integration being required. As a simplification, we throughout set

ka, k, k and k. to their preferred values, as given by (89), (90), (91)

and (99), since this preference was based on the resulting simplicity in the

first-order formulae for perturbations in coordinates.

It is convenient to give, in advance, some of the formulae that will be

required. Thus, neglecting O(6) terms in each case,

cos u + n sin u f h + f cos 25 , (218)

sin u - I cos u = - 4f sin 25 , (219)

cos U + n sin 9 = - gf {3(1 - f) cos 4U - 2(10 - 11l) cos 25 - 3(1 - 7f)

...... (220)

sin 9 - nCos U = T*7 {3i(10 - 13T) sin 46i + 2(36 - 40if 2) sin 25i

...... (221)

and

- n) sin 2G - 2&.n cos 27a Ai (5i sin 4U + 12h sin 2U) (222)

These formulae follow at once from (70), (72), (142) and (147).

6.1 Perturbation in r

We require formulae for rI and r2 , such that

r + K r + Kr 2  , (223)

where r is derived from mean elements by application of the standard algorithm

of section 2.5, whilst r and r2 are purely periodic.
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From (84), it follows that

r - i a +I a+ 2 a2} l- (Z + i + K2 2)(cos - KUI sin U)

+ in I + i 2 n2 ) ( s i n U + KUI Cos U) + + K I) sin U

u- ( + Knl) cos Q]2 , (224)

where only such terms are retained as will actually be needed.

On expanding (224) and comparing with (223), we obtain the first-order
formula

r (/I) al - a cos U + I sin U) - i sin M (UI + 2EI sin U- 2nI COB U)]

...... (225)

which reduces to (85), and hence (88), in view of (53). The formula foi r2 ,

similarly, is

r2 a 2 - aI (El cos U + n1 sin U) -C [( 2 cosU + n2 sinU)

-(El sin U I Cos ME( I sin U ! Cos U + UI) 1 (226)

We can replace U by 9 of course, since we are ignoring 0(Ke) pertur-

bations. Then r is a combination of terms given by (122), (65), (218), (220),

(219) and (74), the result on reduction being

r - cos 4U + 21 (26 - 31f) cos 2f + 72h - i- 72k

...... (227)

Choice of k2a , as foreshadowed by (123), now gives our final result, Viz

r 2 fi~g _ ij / cos 4ii + 2 (26 - 31b) cos 2U} (228)

6.2 Perturbation in u

We require formulae for uI and u2 , such that

u + i u + i2 u 2  , (229)

where uI and u2 are purely periodic.
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From (94) it follows that

u = (5K ) + ++ I + K2E2)(sin U + KUI cosU)

- 26 + KnI + K 2 n2)(cos U - KUI sin U) + I [( + K ) 2

- (r + Kn) 2] sin 2U - 2(T + K&I)(+ KnI) cos 2U1  , (230)

with only the needed terms retained.

On expanding (230) and comparing with (229), we obtain the first-order

formula

u I  = U1 + 2 (1 sin U - cos U) + ii [4UI cos i + 5 1 sin (9 + -)

- 5n cos ( + V-)] (231)

which reduces to (95) in view of (53). The formula for u2 , similarly, is

u 2  - U2 + 2 (&2 sin U - cos U) + 2UI (E] cos U + n I sin U)

+ 1 - I  sin 2U - 2Eln i cos 2U] (232)

We replace U by 7j and obtain u2  as a combination of terms given by

(180), (221), (74), (218) and (222), the result being

u2  f {(18 - 3i - 17f 2 ) sin 4U + 2 (72 - 170f + 97f 2 ) sin 2U (233)

6.3 Perturbations in r', u' and c

The first-order results, given in section 3, were based on formulae (43) and

(44), which are not valid when we proceed to second order. Thus we require a

fresh start, based on the formula (45) that effectively defines the cylindrical

polar coordinates r', u' and c

Now (x y z)T  is given by both (41) and (45), so an exact equation

for r', u' and c is

(r' cos u' r' sin u' c) T

= Rl i) R3 ) R3-Q) R I H-) (r cos u r sin u o) T (24

We want to use (234) as source for perturbation formulae that are correct to

second order. Now R3( ) R3(-Q) - R3(Q - Q) and of course 9 - Q - 6Q by



51

the basic definition (33). We write 6 in place of 6 , for convenience, and

also write

= i - x ( =6i) ,

with sine and cosine of i and i denoted by 8, c, s and c . Then the

second-order approximation of (234) is

{r'cos ul\ =6 (r~s cos

r' sin u) 6 1 it - 2 _ c262 -L + i:62 sinu

c -6 1 + 4Sc62 1 -4I 2 _ 26 2 0

The individual equations may be written as

r' cos u' = r (cos u - c6 sin u - J62 Cos u) , (235)

r' sin u' = r (sin u + R cos u - j [t 2 + C262] sin u) (236)

and

c = r(t sin u - 56 cos u + 4sc62 sin u) . (237)

To first order we again see that r' = r and recover the results given by

(102) and (100) of section 3.

To second order, we still have identity between r' and r , consequent
on our choice of k. , as remarked at the end of section 2.5. Thus we need not

consider r' as a separate quantity, but note that we would have to do so if

we were concerned with O(Ke 2 ) or O(K 2e) perturbations.

We can now obtain the second-order perturbation in u', using either

(235) or (236) - as a check we use both. From (235) we have

cos ul = cos u - ( - N) 6 sin u - 162 cos u , (238)

where 6 = iD + K 2 and L = Kil , while from (236) we have

sin u' = sin u + 56 cos u - I (L2 + C22) sin u . (239)

But if u denotes u' - u , we have the Taylor expansions

cos u' = cos u - u sin u - cu Cos u

and

o sin u' = sin u + u cos u - jo sin u
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We identify the two expressions for cos u' ,and likewise for sin u'

expanding u according to the formula

0 u 2 (240)

where u, and u02 are required. It is immediate that

u1 = c 1  (241)

but we have two formulae for u2 , Viz

(02 - -sin u = -i 2in u + 2 Cos u (242)
22 2 1 1 1(~ 1~ o

from the cos u' identity, and

2 .2 22(12 -= (UI -11 - c2 ) sin u (243)

from the sin u' identity. On substitution for Ul, iI and Q, we get the

same formula in both cases, viz

u2 - Z2 = - 1 6 f (I - f)(sin 45 + 2 sin 25) (244)

From (136), the formula for Q2 ' we now get

02 = - A (I - ){(6 + 5) sin 4u + 2(24 - 39f) sin 25 . (245)

For u' , it remains to combine (233) and (245), the result beingD2

u2  - f fr~ sin 4 - (19 - 20f) sin 2 uj . (246)

We finally obtain cI and c2 , where

c (= 6c) c1 + i2 c2, (247)

from (237). We consider this equation in the form

c/r K (i sin u - 9 Q cos u) + -2 (i sin u cos u + jscQ 2 sin u)

cr K i2  ~ 2 siu

...... (248)

Now from (66) and (68), identifying u and u only in the e term,

sin u- sin i cos u sin i cos {[sin u - sin (2 - u)]

+ 1+E [2 sin ( + 3 sin .

...... (249)
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Thus we have recovered (100), except that there is a 'second-order carry-over'

given by the first term of (249), which can be written as J(u - 5) sin 21 cos 5

The second-order terms now combine to give

C 2 /r = i2 sin u - Q2 sin 1 cos u + I sin 2i sin u + fuI sin 21 cos u

...... (250)

which from (128), (136), (68) and (97), replacing u by U , reduces to

c 2 = h r sin 2i {8f sin 3u- (33- 49f- k 2 i) sin ui (251)

The reason for choosing k. according to (129) should now be apparent and the1

final result is simply

c = - rf sin 2i sin 35 (252)

It is worth remarking that, as with cI given by (100), we can replace the factor

r by either r or a if desired. It no longer makes sense to derive an £2

from u2 , however, by multiplying by any of these factors.

6.4 Perturbations in instantaneously fixed RLC directions

The basis for the immediately preceding remark (concerning £2 and u )

is that a natural second-order quantity £2 cannot be defined, since the second

coordinate of a cylindrical triple is unalterably angular. (This point has

already been made in sections 1 and 2.5.) Thus our fundamental results are for

r u2' and c2 , given by (228), (246) and (252) respectively.

For completeness, however, we can obtain formulae for perturbations in

three orthogonal directions, viz the RLC directions as defined in section 2.5 by

irstantaneous values of the mean elements. Denoting coordinates in these (fixed)

directions as (x', y', z') we have

(x', y', z') = rI' cos (u' - 5), r' sin (u' - i), c] , (253)

where (', Y, ') = (i, 0, G)

Introducing the formal expansions of r'( = r to the order required) and

ul, with corresponding expansions for x', y' and z', we find at once that

x; = r , y; = ;u (cf (47)) and z; = Cl 9

o whilst the second-order formulae are0
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x' r i U;(254)

F u' + r ur (255)
Y2 ~ 2

and

=I C
2 2

(The resemblance of (254) and (255) to familiar formulae of dynamics, immediately

clear on replacing r 2  by ji etc, is of course no coincidence.)

Evaluation, based on (88), (102), (228) and (246), gives

xv-Jr4-I [71 cos 45i + 16 (26 - 317) cos 25 + f

and

I - 1j4af [f sin 4U - 2 (19 - 20i) sin 25i]

7 NUMERICAL CHECKS

In addition to the formulae checks against Ref s 22, 25 and 26, as described

in section 5, it was decided to make two numerical checks by comparing a hand-

computation of the formulae of this paper with the results of a numerical inte-

gration. Both these numerical checks were based on an orbit of zero eccentricity,

630 inclination and 12h period, akin to that of NTS 2 (Ref 27), with a greatly

magnified value of J2 and all other sources of perturbation suppressed.

For the first check, J 2  was set to 0.05 and epoch conditions were chosen

to make mean eccentricity about 10, effectively zero for most purposes, the

corresponding osculating eccentricity being about 13.With p = 398602.0, an

ephemeris was generated by numerical integration, and the values of (osculating)

a, i, Qj t, T9 U noted at epoch and after 7 hours, ie 210 0 around the orbit.

The changes in the elements, and also in r and u , were compared with values

computed from the formulae of sections 4 and 6. The result of this check was

entirely satisfactory, the discrepancy for each comparison being of order
-3 -9
K ( 81 x 10 for the magnified J 2 ) as expected. In particular, with our
usual definition of Ri and 5 such that ri is given by U (and hence

inclues W ) adk 2a is given by (123), we have H2-3988.2 i

conformity with the expression

n-2-a3 + F+k [12 (6 - 7i) + Ki(4 19i)3} (256)

that results from substitutions of (162) and (185) in (158).
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The second check was more elaborate and involved use of the NED computer
27

program in a specially modified form. A 12-hour ephemeris, of interval 15 min,

was generated by numerical integration, on this occasion with J2 set to

0.01082628 (ten times the value normally used, but corresponding to a value of

K that would be correct for a close earth satellite), v' = 398601.3 and osculating

eccentricity zero at epoch (mid-point of the 12-hour period), the corresponding

mean eccentricity being 0.000254. The following 22 parameters of the modified

NED were fitted to the 29 points (ie 87 coordinate quantities) of the ephemeris:

a, e, i, Q, , U, fi, S and 14 coefficients in expressions representing perturba-

tions in r, u' and c . For r , the perturbation terms involved cos 25 and

cos 45 , as demanded by (88) and (228), together with Fit cos [i and ft sin G ,

which are required because NED only allows for w as a component of n (see the

remarks on suppression of w in section 3). For u' , the perturbation terms

involved sin 25, sin 4n, sin 5 and cos i , as demanded by (102) and (246),

together with fit cos i and fit sin U . For E , the perturbation terms

involved a constant, sin 2a, cos 2u and sin 39 , as demanded by (100) and (252).

The fitted values for the 22 parameters all agreed with computed values
-3

from the formulae of this paper, to within order K3( 0.82 x 10- 9 for the

magnified J2 ,equivalent to 22 mm at the geocentric distance of NTS 2). The

standard deviation for the 87 coordinate residuals was a mere 0.7 mm.

8 COMPLETION OF FIRST-ORDER ANALYSIS FOR POSITION

To complete the analysis of section 3, it is worth giving the full

(untruncated) expressions for perturbations in the cylindrical polar coordinates

used in this paper. The expressions are quite compact and suggest that the

correspondingly complete second-order expressions might not be unduly complicated.

The (accurate) first-order differential expressions for the cylindrical

coordinates in terms of elements are
2 7

6r = (r/a) 6a - a 6e cos v + (a/q) e 6M sin v , (257)

6u' = 6w + 6Q cos i + q- SM + (2/q 2) (6e sin v + q e 6M cos v)

2 -1

+ (e/2q 2 ) [e sin 2v + q e 6M (3 + cos 2v)] (258)

and

Sc = r (6i sin u 62 sin i cos u) (259)

In these expressions we substitute for 6a etc from equations (55) etc, except

that we must introduce suitable values for the k-constants that were omitted from



56

(55) etc. The preferred values of ke, ki, kQ and k are unchanged from

section 3, but ka , which we now define such that aI contains the term

k a2/p , has the untruncated form h + J2 cos 25 . (This gives an a which isa
much more convenient than, but only slightly different from, the Kozai semi-

major axis, for which the k is given by (263); for the absolute constant a'a 1

introduced in section 3, which is incidentally the semi-major axis of Brouwer

the untruncated ka  is given by (265), as follows from (64).) We also require

kM , not previously introduced; if this is defined such that "+kM" follows

"3f S 4" in the first square brackets of (61), then kM is required to be

identical to k - it will be observed that k and kM  do not exactly cancel

in U (they would if U were qw + M instead of w + M ), the effective

constant in UI being E 2k /(/ + 4)

On this basis, elaboration of (257), (258) and (259) leads to the formulae

= fq cos 25 + he 2 [2 - (F/)(5 - cos 2)] , (260)

u, = {f [in 2u + 49 sin (5 + + 2h (e/q2) [( 3 - 4E2 ) sin

- e sin 2v - 41 2 V( , )]} (261)

and

=, 4rgsin 21i{2 sin (5 +,)3sn ocs (262)

where V(v, e) = - lie - 2 (v - M - 2e sin v)

= sin 2v + O(e)

by (50).

t 'ofm, ae (260) and (261) are respectively compatible with the expressions
for dr s/p and dus + dQ cos i given by Merson on page 8 of Ref 7, if allow-

ance is made for the different values of ka and ke employed; Merson was

working with the unmodified Kozai elements that are obtained by taking

a h (2 + 3e2 + q3) + E2 cos 2@ (263)a

and

ke = 13h {5 + 2q2 ( + i4 + 3f cos 2M . (264)

Formula (262) effectively combines (but with k. here unity instead of zero)

Merson's expressions for di and dQs sin i
5 5

In using (260) to (262), the first step is the generation of mean position,

as usual, and -this raises no problem, since untruncated fZ and W are already
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available from P and ! , as given by (67) and (78). If we wish, we can

continue to use F as the rate of change of U , as opposed to M , if we make
-2an Oe ) correction to kn  and U, , but it is now perhaps more natural to

associate 5 with M . Then n no longer includes M and becomes the standard

mean motion used by both Kozai6 and Brouwer 11; this is actually identical with

our n', and the associated k (untruncated) is given by
n

k h (2 + 3E 2 ) + i2 cos 2r , (265)n

as opposed to the previously 'preferred' value given by (109). There is a con-

sequent change in l , which is given by

2
= - h (I - 3 ,

if ka is standard (or by -hq if ka for the unmodified Kozai semi-major axis is

being used), instead of (162). The changes in kn and jl have an inevitable

effect on 112 9 even if this is still defined so as to make U2 zero; the new

value is given by

12= - 4f(20- 1lf)

instead of (185).

9 ON SECULAR AND LONG-PERIODIC PERTURBATIONS

9.1 General remarks

The original intention was to limit this paper strictly to e-independent

J2 perturbations, and it has been seen that the resulting expressions for short-J2

periodic perturbations are very simple. However, for an eccentricity of 0.01,
2say, a low-altitude satellite experiences long-term perturbations of order J2 e

that, within about a day (since this corresponds to an angular motion of about

100 radians), are of the same order of magnitude as the short-periodic perturbs-
2tions of order J2 . Hence the paper would not be complete without some reference2

to these perturbations. Once we go to order J2 e , there is not much difficulty

in giving the full formulae, valid for any eccentricity.

The long-term e-independent perturbations are purely secular. When

e-dependent terms are considered, however, the long-term perturbations contain

long-periodic components, trigonometrically related to the argument of perigee

( ), as well as purely secular components. The nature of these perturbations

is frequently misunderstood, so some general remarks are offered before the

results for the elements a, e. j, i, w and M are given. (There is no need
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to go to non-singular elements , n and U , since e factors do not appear

in the long-term perturbations.)

Suppose a term Kn cos kM (with K not necessarily the J2-related

quantity used in this paper) occurs as a component of the rate of change of some

element, c say. If C is constant (as it is for orbits at the critical

inclination) we can integrate to get a secular perturbation Knt cos kZ . If W

is not constant, but is itself essentially secular with rate ! , the perturba-

tion can be written in the form

6C£p Kn [sin kw-J
kw

where L . designates "variation over the period of integration", ie it is

a definite integral. The two results are compatible, since [sin k& ]/kl tends

to t cos k6 , over the interval t , as w tends to zero. If, however, 6C

is written with an arbitrary lower limit of integration as with short-periodic

perturbations, in particular in the form sin kM/kw , the perturbation has an

apparent singularity for w zero.

7As was made clear by Merson , trouble is avoided if we keep to definite

integrals. Since we are concerned with k = 2 , we denote by I and I thec s

time integrals of cos 2M and sin 21 - in Ref 7 the negatives of these quanti-
ties were denoted C2 and S2 respectively.

The difficulty is largely a matter of terminology*. The terms 'first-order',

'second-order', etc, are unambiguous when used to describe short-periodic and
2secular perturbations, a second-order ( perturbation having the intuitive

meaning that the perturbation would have been A 2 times larger if J2 had been

X times larger. It is not so simple for a long-periodic perturbation, however,

since the frequency of such a perturbation increases by a factor of X when its

amplitude increases, thereby reducing the increase in magnitude of the long-term

variation.

It seems most natural to take the order of a long-periodic perturbation

from the power of J2 appearing in the appropriate rate-of-change component, ie

in for element . With this philosophy, there are no long-periodic

* The long-standing division of opinion over the problem of the critical inclin-

ation is a good example of the semantic confusion related to the meaning of
'order'. As Allan has pointed out2 9, the behaviour of certain of the orbital
elements over very long periods of time is indeed a libration of amplitude
proportional to J2 , but this does not imply a singularity - the effect arises
from rates of change that are still only of order j2 . 0

2
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perturbations of first-order (though J2 is exceptional here and there are

such perturbations for J3 etc). Second-order perturbations arise, and may be

expressed in terms of 2 1c and 2 I . Since

Ic = [sin 2@ 1/26i

where* = K (4 - 5f)

-2
K I c behaves as a first-order perturbation, and is regularly so described, but
in the present paper it will be regarded as still of second order. Such pertur-

bations are, after all, not merely less important than first-order secular

perturbations - they are also less important than second-order secular

perturbations. (Their long-term magnitude is admittedly much greater than for

short-periodic perturbations of the second order, but this is no more than the

usual more-important-if-longer-period effect.)

The above is not the full story, however, as we shall encounter some

apparently first-order long-periodic perturbations that are really of the third

order. The dominant secular perturbations 0 and w , given by - Kn cos i

and Kn (4 - 5f) respectively, are functions of e (an argument of K ) and

i , so that they have induced long-periodic variation - thus cos i is equal to

an initial (hence constant) value, cos 0 ,plus a term given by - 6i2 p sin 1

The integral of K Si is itself long-periodic and of third order, but because

two integrations are now involved it is apparently first order, apd particularly
t-2

so if written with a factor W . Since, as we shall see, 6e and 6i are

multiples of Is , it is natural to introduce the notation IIs  for the integral

of this quantity, ie for the double time integral of sin 2- .

Two further preparatory points must be made. First, the form each long-

periodic perturbation takes is dependent on the expression for the first-order

short-periodic perturbation, in that the arbitrary k-constant may be chosen, in

different ways, as a function of w . Second, there is an entirely different way

of looking at second-order long-term variation, and this was the approach adopted

in Refs 2 and 4, in particular. It involves the derivation of each element's

variation over a complete revolution of the satellite, to eliminate the short-

periodic effect, but now the interpretation of "complete revolution" is crucial -

Here W is just the first-order secular rate, ie K. We can correct thisby t esecond-order 2 I2,b t"
by the s2 , but the time derivative of w is no longer

0 actually constant, now that we consider @ to have long-periodic as well as

secular variation. The quantities Ic, Is and IIs necessarily neglect the
long-periodic variation.
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the variation from perigee to perigee, for example, is different from the varia-

tion from node to node, not because perigee and node are different points but

simply because there is a slippage (due to ), as between successive perigees

and successive nodes.

9.2 Perturbation in a

There is no secular perturbation in the semi-major axis, nor is there any

second-order long-periodic variation so long as the u-dependent part of the

'constant' k is specifically 'fE2 cos 2 . This is the case not only for thea
three k 's that have been quoted - the preferred value of this paper, the

a
Brouwer value associated with a' and the Kozai value - but also, it appears,

for th_ ka  implied by two of the papers (the one by Berger and Walch 25 and

the one by Kinoshita 26 ) considered in section 5. (The value of this k is
3 a

less than the Kozai value by hq .) Given an arbitrary k a , however, we have
a long-periodic perturbation given by

daLp ....q-2 [e2 cos 2M - ka] (266)

As remarked in section 9.1, there is an apparent long-periodic effect if

we only consider the value of a at, say, perigees or ascending nodes. For

perigees the effect is given by

6a~p K - 2 -2 (1 + U)3 (4 - Sf) I

as indicated by equation (181) of Ref 4.

9.3 Perturbation in e

There is again no secular perturbation, but there is a long-periodic

perturbation given by

6eh (14 - 1Sf) I + cos 2M - kil , (267)

where the second term vanishes for both our standard k and the value impliede
by use of Kozai elements. However, Refs 25 and 26 involve a value of k that

is less than Kozai's value by Iiq 2 (I + 24)(1 + q)-2 cos 2M , whence it follows

that, to O(e) , their expression for 6e p should involve a factor 2(13 - 15f)

in place of the factor (14 - 15f) in the standard expression. This is con-

firmed by BW 112.15 , in the notation of section 5.2, referring to Ref 25.
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9.4 Perturbation in i
A simple relation exists between perturbations in a, e, i, since p cos 2.

is constant, as remarked in section 5.3. This constancy applies to any potential

field that is symmetric about the z-axis, ie to the potential associated with

any zonal harmonic. Assuming 6a1p to be zero, it follows that

6i p -eq cot i 6e . (268)

In fact

ip = -2 sin 2 (14 - 15f) I - JK sin 2i [ki] , (269)

where the second term vanishes for our standard k.( = 1) and the Kozai1

ki( = 0) . However, Refs 25 and 26 involve a value of ki  that exceeds Kozai's

value by 92 (1 + 2j)(1 + j)-2 cos 2w , whence it again follows, to 0(i) , that

their expression for 6i p should involve a factor 2(13 - 15f) in place of

the factor (14 - 15f) in the standard expression. This is confirmed by

BW 112.18.

9.5 Perturbation in ?

The complete second-order long-term perturbation may be obtained from the

following expression, based on Ref 7, for the rate of change of the mean element:

&1~ cos 1(1 + J(/f) ak/aw + !?i- 2 [4(15 - 19i)

+ 2 (4 - 9f) - (4 + 5i) + 2 cos 2@1((14 - 3i)

- 2e2(7 - 15f)) - 48 ka + 1292 ke - 12fq2 k. - 36k]). (270)

We consider the secular component first. With our standard values of
ka, ke  and k. , and k given by (265), we get (cf (137) if k is from (109))

e1i n ' n

= 1 ncsi4 (3 -51) _ 2 (4 +5i)~ (271)

With the Kozai k's, on the other hand, we get

2 COS i {48j - 4(9- (4 + 5 ,

as given (effectively) in Refs 6 and 7. Finally, with the k's of Refs 25 and

26, we get

Q - ' cosI 124h@q + 4(9 - 10f) (4 + 5f) ,
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in agreement with BW 110.20-24 and with the sixth formula of KB-53 (notation
4

of section 5.4, in reference to Ref 26) - since Ref 25 uses (R/) rather than

(R/F)4  as (effectively) a factor of , the bracketed expression here must be

multiplied by q before agreement is evident.

Turning to the long-periodic component, we can write the basic second-order

perturbation as

6S p(b )  1.
2  (7 - 15-) cos 1 IC K cos i [kS11 + 2- cos i X

xf{414 (ka) - 3if2 cos 2] - 4 2 [(k e) W - 31 cos 2-]

+ 4f4 2 (k) + 3[4(kn)W - 3i52 cos 2Z] dt , (272)
1W Lnw

where (k a) denotes the w-dependent (long-periodic) part of ka , etc. But
in addition we now have an induced (third-order) perturbation, as explained in

section 9.1. On the assumption that the first-order secular perturbation is

computed from

0= nKo0 Cosi '

where zero-suffices have been added to indicate that we use initial values of

the mean elements, our additional perturbation is given by

Zp (m) - - KR cos i [4-2 f ]i

from this, using (268), we may write

cos- I e dt
£p(ind) " 5s ep

Hence our standard expression for the combination of 0 Zp(b. and

60 Xp(ind) is given by

2...=..122( - 15i) Ic- Arf(14 - 15r) I . (273)

Use of the k's of Refs 25 and 26, on the other hand, including
j2(1 + 2q)(I + j)-2 sin 2M for k , leads to
4itp + = - 2 s [23 30i) + 0( 2 )] c - WiGE (13 - 5i) II ;

if (by taking indefinite integrals instead of evaluating Ic  and II - see the

discussion in section 9.1), we interpret this as a first-order perturbation,

we get
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-2 o (52- 120i + 75 sin 2- + 0(i4
12 (4 - 5-)2 e

which tallies with BW 112.20

9.6 Perturbation in w

The complete second-order long-term perturbations may be obtained from the

following expression, based on Ref 7, for the rate of change of the mean element:

=d _ ((4 - 5f) - J(i/i) ak/W + K -2[ 2 ( 2 8 8 - 676f + 395f 2 )

- (40 + 4i - 65- 2 ) - e4(56 - 36i - -2 2 cos 2w (20(5 - 6fi

e28 1f) e (28 i3S2~~
(28 - 4 + 2 e (28 - 158f + 135 24(4 - 5f) x

x (4ka 92k +3kn)- 240f(I - f)q2ki]) . (274)

We consider the secular component first. With our standard values of

ka ke and k. , and k given by (265), we get (cf (216) if k is from (109))a e n 'n

2ii 2f (4 + 25f) - 2 (56 - 36F - 45f2 )} (275)

With the Kozai k's , on the other hand, we get

W2  
f - n {96M (4 - 5f) - 2 (192 - 412f + 215f) - 2 (56 - 36 -45i2

as given (effectively) in Refs 6 and 7. Finally, with the k's of Refs 25 and

26, we get

w2 =
f ~ iB j48 (4 - 5f) + 2(192 - 412f + 215f 2 ) + 2 (56 - 36f - 452,

in agreement with BW 110.25-29 and with the fifth formula of KB-53; as with
-- 8

2 , the bracketed expression must be multiplied by 8 to make agreement with

Ref 25 evident.

Turning to the long-periodic component, we can write the basic second-order

perturbation as

6cW p(b) _i 2  12i (1 4. - 15i) - j2 (28 - 158f + 135f 2)} Ic

- +ik + 3f sin Z - Ti 2.q- 2 A (4 - 5f) x

x (144(k) - 3F 2 cos 26) - 4i2 [(k) - 3i cos2@1

3[4(k) 3i*2 co @ + 4i - i~q2 (k) d , (276)
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using the same notation as for 60 p(b) . We also have an induced perturbation

that arises from computation of the first-order secular perturbation using

Wi =  JK 0iR0 (4- Sf 0 )

This additional perturbation is given by

= n E2 u2 (4- 5 e dt - 5 sin i cos i p dt]
9 gp(ind) L *12(4 5) g

this gives, using (268),

6R p(ind) = liq (13 - 15f) 6e dt

Hence our standard expression for the combination of 6w p(b)  and 6w p(ind)

is given by

6-p 48 [2f (14 - 15f) - (28 - 158f + 135f 2j 'c

+ 2Kng2f (13 - 15i)(14 - 15) II s  . (277)

Use of the k's of Refs 25 and 26, on the other hand, including

-)-[31 + 4(1 + 2()(1 + q)2 T + -2 f)] sin 2) for k , leads to- w [3 + -( +2f(l++e e

6Wzp - 2ji 1(2i (13 15f) _ j2 (26 - 155f + 140f 2)

+ 0(14 ) 1c + 2Kifi 2i (13 - 15i)2 Is "

If we take the apparent first-order perturbation that results, we get

Ksin 2 _ '2f (52 - 125f + 75f2 - 2 (104 - 412f + 555f 2 - 250 3 ) + 0(4);

24 (4 - 512 7S) (14 42 5Sf 20 )+

this conforms with BW 112.23-24 if we remember to replace K by q4(1 - 2 )2

so that the coefficient of e2 changes to - (104 - 620f + 1055f2 - 550j3)

9.7 Perturbation in M

Merson7 has shown that the rate of change of M is given by

dM n' - if4 (8 8?_nq1  i 1 15i) cos 2M

+ JK4 (RkM/ w + 6i cos 2Z) , (278)
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where the final term has been added here to cover the possibility of a non-

standard value of kM . This expression is 'standard' from the point of view of

the present paper.

To generalize from n' , which is the absolute constant introduced in

section 3, to an arbitrary ii would require a deeper analysis than will be

embarked upon here, since it would involve the derivation of the values of k2n

(see section 4.8) appropriate to n' and the selected R . However, the diffi-

culty is not too great in going from n' to the R of Ref 25, so long as it is

taken only to O(e). The reward for this is an overall check between Refs 7 and

25 and the formula for k2a in section 4.1

The values of k , appropriate to n' and n (the ii of Ref 25 will

be understood in what follows), can be derived from the values of k2a , with

and i 2  (see section 4.8) taken as zero in both cases. Thus (161) gives k = k2n a

and then (168) gives

k (5i2 + l 2 - 8k 2 )
2n a 2af+

For n' (given by n' a = ) we have (untruncated) k = 1h(1 + I1 2) +

+ 2 cos 20 , as quoted in section 8, and k2a given, to 0(g) , by (117).
This leads to what we may designate k2n(n') , an expression for which has

-2 -3
already been given - see (188). For R (which satisfies n a . p) , on the

other hand, both ka and k2a are 0(2 ) so that, to 0(e)

k 2n(ji) = i2

But the k 2n's are defined such that

n' J1- I1K' k (n') + K' 2 k2n(n')4

and

il - IJK k n() + K2 k2n(r)

are identical to O(E) , since they represent the same mean value of the osculating

mean motion, n . In making the identification we can take ki  to be zero, in

(188), since it is 0( 2) in Ref 25. Then we obtain, to 0(g),

n' = R + K' n' h + :K2 (40 - 48 + 30 2 )

But K' n' must be replaced by K R in the first-order term of this relation,

where in fact
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K' n' = Ku (I + 24Kb) + O(K2 E2)

since, to O(F) , K' = K(I + 1+ih) and n' - n(0 + 1(h) Hence we get

n = + 1+ 2 (152 - 384f + 282fi) + 0(i2 ) (279)

On combining the K2 terms in (278) and (279), we see that, residual to the ?f

of Ref 25 and the first-order term Knh , dM/dt contains the secular componenL

K2 (144 - 376f + 287f2)

This tallies with BW 110.30 (Ref 25), but not with the fourth formula of KB-53

(Ref 26). However, the apparent error in second-order M , as given by Ref 26,

has already been remarked (sections 5.2 and 5.4) and Is resolved by allowance for

an effective non-zero k2a '

The long-periodic perturbation is easy to express in the appropriate form

for checking against Ref 25. The appropriate kM is - (f {(3 + 2(2 + e2) x

(I + 2q)/(l + _2)} sin 2 , whereupon the last-term of (278) yields

2 (4 - 5f)(6 - 7E2 + 0(e4) cos 2W_

This leads to a perturbation of the form

(12(13 - 15i) - 592 (7 - 8i) + 0(94) 4 C (280)

this conforms with BW 112.27 and BW 112.28 if we remember to replace K by
K4 (1 2) -2, so that the coefficient of U2 changes to (17 - 20f) , and

also note that BW 112.27, 28, 29 and 30 all contain an unnecessary factor,

(4 - 5f) , which may be divided out.

JO DISCUSSION AND CONCLUSIONS

The main goal of the paper has been the derivation of the principal (ie
2 perturbations of a satellite orbit by an elementary approach,

e-independent) J2

and the expression of the results in as compact a set of formulae as possible.

The elementary approach, assuming nothing beyond the planetary equations of

Lagrange, has inevitably involved some long and tedious algebra, but simple

formulae were eventually obtained by expressing short-periodic perturbations in

terms of a rotating system of cylindrical polar coordinates.

The introduction of the paper referred to the sophistication of the litera-

ture and to the difficulty in picking out the main results from a mass of
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mathematics. It is therefore necessary, to avoid the same charge, that the

present author summarize his main results, either directly or by reference to

the equation numbers. This will first be done on the basis of the assumption

made during most of the analysis, namely, that eccentricity is of the same
2 2

order of magnitude as J, so that J 2e , as well as J 2e , can be neglected;

there is also, of course, the tacit understanding that the results are not to be
3

used over such a long period of time as would make J 2  perturbations intolerable,

2 2

first-order results are indicated, permitting considerable relaxation on the

smallness of eccentricity. Finally, to provide results that are valid over an

extended period, the complete J 2formulae for long-term development are indi-
2

cated, involving the special treatment of long-periodic perturbations.

The starting point is assumed to be a set of mean elements at epoch, viz

509 eop 10 Q03 70 and M , whence E09 T 0 and U 0 by (1), (2) and (3);
values of pi, J2and R are also assumed, whence also K following (21).

The actual generation of these mean elements, given osculating elements (or the

coordinates of position and velocity), would not be entirely trivial, but if no

other recourse were available they could be adjusted iteratively so that the

perturbations led back to the osculating elements. The significance of 'mean

elements' was discussed in section 2.4, and the paper contains many general

formulae which can be evaluated in terms of particular definitions of these

elemtnts.

For our first, and most restricted, derivation of satellite position at

time t , we start with 3, 9 and I , unchanged from No$ 9 and 10.and

hence derive ff from the version of Kepler's third law expressed by (256).

The values of 5, W_ and U are given by

Q= Q - Kficos i{1 -JK (3 - 4i)t ,(281)

7= M + RR (4 - 5f) t (282)

and

= U0 +ifit ,(283)

whee te epresios fr 6, 62 an ,. given by (67), (137) and (78), have

been employed.

The mean elements lead at once, by the standard algorithm of section 2.5,

to iand G . Then (88), (102), (100), (228), (246) and (252) can be combined

as
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r + *K2if {cos 2U - nK If cos 4 + 2(26 - 31f) cos 2] , (284)

U, 5+ {fTR sini + 4E [6hsisin+ in(E + 33)]

-+U [i sin 45 - (!9 - 20i) sin 25(285)

and

c 4 Ki sin 21 { [2 sin (a +v) -3 sin ] - JKf sin 3 (286)

to give the special cylindrical coordinates. Finally, x, y and z are given

by (45), r' being identified with r .

Expressions for osculating elements, if these are desired, are necessarily

more complicated than (284) to (286). The element C is given by

C + SC,

where first-order contributions to 6C , for C equal to a, i, Q, , n and U

are given by (65), (66) (68), (70) (72) and (74), and second-order contributions

by (122), (128), (136), (142), (147) and (180); the latter involve preferred

values of the k-constants employed throughout this paper, the generalized expres-

sions being given by (121), (127), (134), (141), (146) and (179) - correspondingly

generalized 02 and U2  are given by (133) and (181).

If the first-order effects are to be covered completely, ie without

e-truncation, it is perhaps more natural to define 5 so that (283) is replaced

by

M = M0 + nt , (287)

though the continued absence of a second-order component of @ means that the

second-order part of B still really relates to U . This implies a change of

kn , with a new version of Kepler's third law, given by

-2 -3 j2= _ 1- (1 - - f (20 - llf) (288)

instead of by (256), where the second-order component now comes from the last

equation of section 8. The change in kn  affects (281), which has to be

replaced by

5- Kn Rs 0 i- co (3 - 5?)f t , (289)

and the first-order components of r, u' and c are now as given by (260) to

(262) and nGt as in (284) to (286),
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If the long-term second-order effects are to be represented completely,

with an explicit second-order component of w in particular, then to identify

n with M we require yet a further version of Kepler's third law, Viz

n 2 ( 3 )E -0 K 0 (4 - 9f0  , (290)

in which zero-suffices appear because e and i are no longer constant. The

expressions for the long-term variation of the mean elements are as follows:

a = a0  ' (291)

e= en e 0q0 f0 (14 - 15f 0 ) Is  , (292)

: : ~- 2 - ; 2 2 0 5 0 2 3

= 0 + 20 n  
0 sin 2i0 (14 - 15f 0) I (293)

Q2=12 K n cos Ti A Ri0 [4 (3 - 5S0) U' 24 510 )]~ t
+ -2

- K 0n c0 Cos 10 2(7 - SO)Ic - 5K 0nf0 (4 - 15Osf)l (294)

R - 1Kn (4 - Sf0 ) - 4%II2TO( + 25f 0) _-2 (56 - 36FO 45fj i2

- K~n 2f0 (14 - 15f 0 ) -e(28 - 158f 0 + 135f )I C

+ 2K ne f0(13 - 15f )(14 - 15f)Ils  , (295)
0000 0s

and
- 0 +  t 1& -3-

M + + qofo 0(14 - 15f 0 )Ic (296)

whe-e I , I and II are the definite integrals of cos 2(Z0 + Wt)

sin 2( 0 + w0t) and Is , respectively.

No -2-2 contribution is required in (290) because we have not taken the
0 02

short-periodic perturbations, in a in particular, to O(K e) , let alone

0(K2 e 2) ; hence the second-order constant k2a , introduced in section 4.2, can

be regarded as including whatever component is necessary to eliminate any

0(K2 e 2) term.
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